We're about to refactor the binary search over restart points so that it
does not need to fully decode the record keys anymore. To do so we will
need to decode the record key lengths, which is non-trivial logic.
Extract the logic to decode these lengths from `refatble_decode_key()`
so that we can reuse it.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When decoding log records we need a temporary buffer to decode the
reflog entry's name, mail address and message. As this buffer is local
to the function we thus have to reallocate it for every single log
record which we're about to decode, which is inefficient.
Refactor the code such that callers need to pass in a scratch buffer,
which allows us to reuse it for multiple decodes. This reduces the
number of allocations when iterating through reflogs. Before:
HEAP SUMMARY:
in use at exit: 13,473 bytes in 122 blocks
total heap usage: 2,068,487 allocs, 2,068,365 frees, 305,122,946 bytes allocated
After:
HEAP SUMMARY:
in use at exit: 13,473 bytes in 122 blocks
total heap usage: 1,068,485 allocs, 1,068,363 frees, 281,122,886 bytes allocated
Note that this commit also drop some redundant calls to `strbuf_reset()`
right before calling `decode_string()`. The latter already knows to
reset the buffer, so there is no need for these.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
We have a few functions which are basically just accessors to
structures. As those functions are executed inside the hot loop when
iterating through many refs, the fact that they cannot be inlined is
costing us some performance.
Move the function definitions into their respective headers so that they
can be inlined. This results in a performance improvement when iterating
over 1 million refs:
Benchmark 1: show-ref: single matching ref (revision = HEAD~)
Time (mean ± σ): 105.9 ms ± 3.6 ms [User: 103.0 ms, System: 2.8 ms]
Range (min … max): 103.1 ms … 133.4 ms 1000 runs
Benchmark 2: show-ref: single matching ref (revision = HEAD)
Time (mean ± σ): 100.7 ms ± 3.4 ms [User: 97.8 ms, System: 2.8 ms]
Range (min … max): 97.8 ms … 124.0 ms 1000 runs
Summary
show-ref: single matching ref (revision = HEAD) ran
1.05 ± 0.05 times faster than show-ref: single matching ref (revision = HEAD~)
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When reading a record from a block, we need to decode the record's key.
As reftable keys are prefix-compressed, meaning they reuse a prefix from
the preceding record's key, this is a bit more involved than just having
to copy the relevant bytes: we need to figure out the prefix and suffix
lengths, copy the prefix from the preceding record and finally copy the
suffix from the current record.
This is done by passing three buffers to `reftable_decode_key()`: one
buffer that holds the result, one buffer that holds the last key, and
one buffer that points to the current record. The final key is then
assembled by calling `strbuf_add()` twice to copy over the prefix and
suffix.
Performing two memory copies is inefficient though. And we can indeed do
better by decoding keys in place. Instead of providing two buffers, the
caller may only call a single buffer that is already pre-populated with
the last key. Like this, we only have to call `strbuf_setlen()` to trim
the record to its prefix and then `strbuf_add()` to add the suffix.
This refactoring leads to a noticeable performance bump when iterating
over 1 million refs:
Benchmark 1: show-ref: single matching ref (revision = HEAD~)
Time (mean ± σ): 112.2 ms ± 3.9 ms [User: 109.3 ms, System: 2.8 ms]
Range (min … max): 109.2 ms … 149.6 ms 1000 runs
Benchmark 2: show-ref: single matching ref (revision = HEAD)
Time (mean ± σ): 106.0 ms ± 3.5 ms [User: 103.2 ms, System: 2.7 ms]
Range (min … max): 103.2 ms … 133.7 ms 1000 runs
Summary
show-ref: single matching ref (revision = HEAD) ran
1.06 ± 0.05 times faster than show-ref: single matching ref (revision = HEAD~)
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The code to iterate over refs with the reftable backend has seen
some optimization.
* ps/reftable-iteration-perf:
reftable/reader: add comments to `table_iter_next()`
reftable/record: don't try to reallocate ref record name
reftable/block: swap buffers instead of copying
reftable/pq: allocation-less comparison of entry keys
reftable/merged: skip comparison for records of the same subiter
reftable/merged: allocation-less dropping of shadowed records
reftable/record: introduce function to compare records by key
In some places we need to sort reftable records by their keys to
determine their ordering. This is done by first formatting the keys into
a `struct strbuf` and then using `strbuf_cmp()` to compare them. This
logic is needlessly roundabout and can end up costing quite a bit of CPU
cycles, both due to the allocation and formatting logic.
Introduce a new `reftable_record_cmp()` function that knows how to
compare two records with each other without requiring allocations.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
According to our usual coding style, the `reftable_new_record()`
function would indicate that it is allocating a new record. This is not
the case though as the function merely initializes records without
allocating any memory.
Replace `reftable_new_record()` with a new `reftable_record_init()`
function that takes a record pointer as input and initializes it
accordingly.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
This isn't used per se, but it is useful for debugging, especially
Windows CI failures.
Signed-off-by: Han-Wen Nienhuys <hanwen@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
This reduces the amount of glue code, because we don't need a void
pointer or vtable within the structure.
The only snag is that reftable_index_record contain a strbuf, so it
cannot be zero-initialized. To address this, use reftable_new_record()
to return fresh instance, given a record type. Since
reftable_new_record() doesn't cause heap allocation anymore, it should
be balanced with reftable_record_release() rather than
reftable_record_destroy().
Thanks to Peff for the suggestion.
Helped-by: Jeff King <peff@peff.net>
Signed-off-by: Han-Wen Nienhuys <hanwen@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
This simplifies unittests a little, and provides further coverage for
reftable_record_copy().
Signed-off-by: Han-Wen Nienhuys <hanwen@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The reftable format is structured as a sequence of blocks, and each block
contains a sequence of prefix-compressed key-value records. There are 4 types of
records, and they have similarities in how they must be handled. This is
achieved by introducing a polymorphic 'record' type that encapsulates ref, log,
index and object records.
Signed-off-by: Han-Wen Nienhuys <hanwen@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>