Files
git/bloom.c
Derrick Stolee 488ae8cf26 bloom: enforce a minimum size of 8 bytes
The original design of changed-path Bloom filters included an 8-byte
block size for filter lengths. This was changed mid-way through the
submission process, and now the length stored in the commit-graph has
one-byte granularity.

This can cause some issues for very small filters. The analysis for
false positive rates assume large filters, so rounding errors become
less important at that scale. When there are only a few paths changed,
a filter that has size only a few bytes could have very different
behavior. In fact, this is evidenced in the Git repository due to the
code organization and careful patch creation that leads to many commits
with very small filters. These small filters frequently have
false-positive rates in the 8-10% range or higher.

The previous change improved the false-positive rate using multiple
Bloom keys when the path has multiple directory components. However,
that does not help at all for files at root. It is typical to have
several commits that change only the README at root, and those commits
would be likely to have these artificially high false-positive rates.

Correct this issue by creating a minimum filters size of 8 bytes. This
requires the very small commits (with fewer than six changes, including
non-root directories) to have a larger filter. In principle, this
violates the bits_per_entry value of struct bloom_filter_settings.
However, it does not actually create a functional problem.

As for compatibility, this only affects new versions writing filters for
commits that do not yet have a filter. Old version will write the
smaller filters and this version will persist and properly read that
data. Now, the new files will be generated slightly larger.

               Bytes before   Bytes after  Difference
  --------------------------------------------------
  git             4,021,078    4,275,311   +6.32%
  linux          72,212,101   73,909,286   +2.35%
  tensorflow      7,596,359    7,691,646   +1.25%

This has a measurable improvement in the false-positive rate and the
end-to-end run time for these repos. The table below compares the average
false-positive rate and runtime of

  git rev-list HEAD -- "$path"

before and after this change for 5000+ randomly* selected paths from
each repository:

                    Average false           Average        Average
                    positive rate           runtime        runtime
                  before     after     before     after   difference
  ------------------------------------------------------------------
  git             0.786%     0.227%    0.0387s    0.0289s -25.5%
  linux           0.0296%    0.0174%   0.0766s    0.0706s  -7.8%
  tensorflow      0.6977%    0.0268%   0.0420s    0.0384s  -8.5%

*Path selection was done with the following pipeline:

        git ls-tree -r --name-only HEAD | sort -R | head -n 5000

These relatively-small increases in file size appear to be a fair price
to pay for these performance improvements.

Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-06-17 14:21:45 -07:00

305 lines
7.5 KiB
C

#include "git-compat-util.h"
#include "bloom.h"
#include "diff.h"
#include "diffcore.h"
#include "revision.h"
#include "hashmap.h"
#include "commit-graph.h"
#include "commit.h"
define_commit_slab(bloom_filter_slab, struct bloom_filter);
struct bloom_filter_slab bloom_filters;
struct pathmap_hash_entry {
struct hashmap_entry entry;
const char path[FLEX_ARRAY];
};
static uint32_t rotate_left(uint32_t value, int32_t count)
{
uint32_t mask = 8 * sizeof(uint32_t) - 1;
count &= mask;
return ((value << count) | (value >> ((-count) & mask)));
}
static inline unsigned char get_bitmask(uint32_t pos)
{
return ((unsigned char)1) << (pos & (BITS_PER_WORD - 1));
}
static int load_bloom_filter_from_graph(struct commit_graph *g,
struct bloom_filter *filter,
struct commit *c)
{
uint32_t lex_pos, start_index, end_index;
while (c->graph_pos < g->num_commits_in_base)
g = g->base_graph;
/* The commit graph commit 'c' lives in doesn't carry bloom filters. */
if (!g->chunk_bloom_indexes)
return 0;
lex_pos = c->graph_pos - g->num_commits_in_base;
end_index = get_be32(g->chunk_bloom_indexes + 4 * lex_pos);
if (lex_pos > 0)
start_index = get_be32(g->chunk_bloom_indexes + 4 * (lex_pos - 1));
else
start_index = 0;
filter->len = end_index - start_index;
filter->data = (unsigned char *)(g->chunk_bloom_data +
sizeof(unsigned char) * start_index +
BLOOMDATA_CHUNK_HEADER_SIZE);
return 1;
}
/*
* Calculate the murmur3 32-bit hash value for the given data
* using the given seed.
* Produces a uniformly distributed hash value.
* Not considered to be cryptographically secure.
* Implemented as described in https://en.wikipedia.org/wiki/MurmurHash#Algorithm
*/
uint32_t murmur3_seeded(uint32_t seed, const char *data, size_t len)
{
const uint32_t c1 = 0xcc9e2d51;
const uint32_t c2 = 0x1b873593;
const uint32_t r1 = 15;
const uint32_t r2 = 13;
const uint32_t m = 5;
const uint32_t n = 0xe6546b64;
int i;
uint32_t k1 = 0;
const char *tail;
int len4 = len / sizeof(uint32_t);
uint32_t k;
for (i = 0; i < len4; i++) {
uint32_t byte1 = (uint32_t)data[4*i];
uint32_t byte2 = ((uint32_t)data[4*i + 1]) << 8;
uint32_t byte3 = ((uint32_t)data[4*i + 2]) << 16;
uint32_t byte4 = ((uint32_t)data[4*i + 3]) << 24;
k = byte1 | byte2 | byte3 | byte4;
k *= c1;
k = rotate_left(k, r1);
k *= c2;
seed ^= k;
seed = rotate_left(seed, r2) * m + n;
}
tail = (data + len4 * sizeof(uint32_t));
switch (len & (sizeof(uint32_t) - 1)) {
case 3:
k1 ^= ((uint32_t)tail[2]) << 16;
/*-fallthrough*/
case 2:
k1 ^= ((uint32_t)tail[1]) << 8;
/*-fallthrough*/
case 1:
k1 ^= ((uint32_t)tail[0]) << 0;
k1 *= c1;
k1 = rotate_left(k1, r1);
k1 *= c2;
seed ^= k1;
break;
}
seed ^= (uint32_t)len;
seed ^= (seed >> 16);
seed *= 0x85ebca6b;
seed ^= (seed >> 13);
seed *= 0xc2b2ae35;
seed ^= (seed >> 16);
return seed;
}
void fill_bloom_key(const char *data,
size_t len,
struct bloom_key *key,
const struct bloom_filter_settings *settings)
{
int i;
const uint32_t seed0 = 0x293ae76f;
const uint32_t seed1 = 0x7e646e2c;
const uint32_t hash0 = murmur3_seeded(seed0, data, len);
const uint32_t hash1 = murmur3_seeded(seed1, data, len);
key->hashes = (uint32_t *)xcalloc(settings->num_hashes, sizeof(uint32_t));
for (i = 0; i < settings->num_hashes; i++)
key->hashes[i] = hash0 + i * hash1;
}
void clear_bloom_key(struct bloom_key *key)
{
FREE_AND_NULL(key->hashes);
}
void add_key_to_filter(const struct bloom_key *key,
struct bloom_filter *filter,
const struct bloom_filter_settings *settings)
{
int i;
uint64_t mod = filter->len * BITS_PER_WORD;
for (i = 0; i < settings->num_hashes; i++) {
uint64_t hash_mod = key->hashes[i] % mod;
uint64_t block_pos = hash_mod / BITS_PER_WORD;
filter->data[block_pos] |= get_bitmask(hash_mod);
}
}
void init_bloom_filters(void)
{
init_bloom_filter_slab(&bloom_filters);
}
static int pathmap_cmp(const void *hashmap_cmp_fn_data,
const struct hashmap_entry *eptr,
const struct hashmap_entry *entry_or_key,
const void *keydata)
{
const struct pathmap_hash_entry *e1, *e2;
e1 = container_of(eptr, const struct pathmap_hash_entry, entry);
e2 = container_of(entry_or_key, const struct pathmap_hash_entry, entry);
return strcmp(e1->path, e2->path);
}
struct bloom_filter *get_bloom_filter(struct repository *r,
struct commit *c,
int compute_if_not_present)
{
struct bloom_filter *filter;
struct bloom_filter_settings settings = DEFAULT_BLOOM_FILTER_SETTINGS;
int i;
struct diff_options diffopt;
int max_changes = 512;
if (bloom_filters.slab_size == 0)
return NULL;
filter = bloom_filter_slab_at(&bloom_filters, c);
if (!filter->data) {
load_commit_graph_info(r, c);
if (c->graph_pos != COMMIT_NOT_FROM_GRAPH &&
r->objects->commit_graph->chunk_bloom_indexes) {
if (load_bloom_filter_from_graph(r->objects->commit_graph, filter, c))
return filter;
else
return NULL;
}
}
if (filter->data || !compute_if_not_present)
return filter;
repo_diff_setup(r, &diffopt);
diffopt.flags.recursive = 1;
diffopt.detect_rename = 0;
diffopt.max_changes = max_changes;
diff_setup_done(&diffopt);
/* ensure commit is parsed so we have parent information */
repo_parse_commit(r, c);
if (c->parents)
diff_tree_oid(&c->parents->item->object.oid, &c->object.oid, "", &diffopt);
else
diff_tree_oid(NULL, &c->object.oid, "", &diffopt);
diffcore_std(&diffopt);
if (diffopt.num_changes <= max_changes) {
struct hashmap pathmap;
struct pathmap_hash_entry *e;
struct hashmap_iter iter;
hashmap_init(&pathmap, pathmap_cmp, NULL, 0);
for (i = 0; i < diff_queued_diff.nr; i++) {
const char *path = diff_queued_diff.queue[i]->two->path;
/*
* Add each leading directory of the changed file, i.e. for
* 'dir/subdir/file' add 'dir' and 'dir/subdir' as well, so
* the Bloom filter could be used to speed up commands like
* 'git log dir/subdir', too.
*
* Note that directories are added without the trailing '/'.
*/
do {
char *last_slash = strrchr(path, '/');
FLEX_ALLOC_STR(e, path, path);
hashmap_entry_init(&e->entry, strhash(path));
if (!hashmap_get(&pathmap, &e->entry, NULL))
hashmap_add(&pathmap, &e->entry);
else
free(e);
if (!last_slash)
last_slash = (char*)path;
*last_slash = '\0';
} while (*path);
diff_free_filepair(diff_queued_diff.queue[i]);
}
filter->len = (hashmap_get_size(&pathmap) * settings.bits_per_entry + BITS_PER_WORD - 1) / BITS_PER_WORD;
if (filter->len && filter->len < 8)
filter->len = 8;
filter->data = xcalloc(filter->len, sizeof(unsigned char));
hashmap_for_each_entry(&pathmap, &iter, e, entry) {
struct bloom_key key;
fill_bloom_key(e->path, strlen(e->path), &key, &settings);
add_key_to_filter(&key, filter, &settings);
}
hashmap_free_entries(&pathmap, struct pathmap_hash_entry, entry);
} else {
for (i = 0; i < diff_queued_diff.nr; i++)
diff_free_filepair(diff_queued_diff.queue[i]);
filter->data = NULL;
filter->len = 0;
}
free(diff_queued_diff.queue);
DIFF_QUEUE_CLEAR(&diff_queued_diff);
return filter;
}
int bloom_filter_contains(const struct bloom_filter *filter,
const struct bloom_key *key,
const struct bloom_filter_settings *settings)
{
int i;
uint64_t mod = filter->len * BITS_PER_WORD;
if (!mod)
return -1;
for (i = 0; i < settings->num_hashes; i++) {
uint64_t hash_mod = key->hashes[i] % mod;
uint64_t block_pos = hash_mod / BITS_PER_WORD;
if (!(filter->data[block_pos] & get_bitmask(hash_mod)))
return 0;
}
return 1;
}