 749f763dbb
			
		
	
	749f763dbb
	
	
	
		
			
			Signed-off-by: Ondřej Bílka <neleai@seznam.cz> Signed-off-by: Junio C Hamano <gitster@pobox.com>
		
			
				
	
	
		
			4370 lines
		
	
	
		
			125 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4370 lines
		
	
	
		
			125 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Extended regular expression matching and search library.
 | ||
|    Copyright (C) 2002-2005, 2007, 2009, 2010 Free Software Foundation, Inc.
 | ||
|    This file is part of the GNU C Library.
 | ||
|    Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
 | ||
| 
 | ||
|    The GNU C Library is free software; you can redistribute it and/or
 | ||
|    modify it under the terms of the GNU Lesser General Public
 | ||
|    License as published by the Free Software Foundation; either
 | ||
|    version 2.1 of the License, or (at your option) any later version.
 | ||
| 
 | ||
|    The GNU C Library is distributed in the hope that it will be useful,
 | ||
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | ||
|    Lesser General Public License for more details.
 | ||
| 
 | ||
|    You should have received a copy of the GNU Lesser General Public
 | ||
|    License along with the GNU C Library; if not, write to the Free
 | ||
|    Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 | ||
|    02110-1301 USA.  */
 | ||
| 
 | ||
| static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags,
 | ||
| 				     int n) internal_function;
 | ||
| static void match_ctx_clean (re_match_context_t *mctx) internal_function;
 | ||
| static void match_ctx_free (re_match_context_t *cache) internal_function;
 | ||
| static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, int node,
 | ||
| 					  int str_idx, int from, int to)
 | ||
|      internal_function;
 | ||
| static int search_cur_bkref_entry (const re_match_context_t *mctx, int str_idx)
 | ||
|      internal_function;
 | ||
| static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, int node,
 | ||
| 					   int str_idx) internal_function;
 | ||
| static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop,
 | ||
| 						   int node, int str_idx)
 | ||
|      internal_function;
 | ||
| static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts,
 | ||
| 			   re_dfastate_t **limited_sts, int last_node,
 | ||
| 			   int last_str_idx)
 | ||
|      internal_function;
 | ||
| static reg_errcode_t re_search_internal (const regex_t *preg,
 | ||
| 					 const char *string, int length,
 | ||
| 					 int start, int range, int stop,
 | ||
| 					 size_t nmatch, regmatch_t pmatch[],
 | ||
| 					 int eflags);
 | ||
| static int re_search_2_stub (struct re_pattern_buffer *bufp,
 | ||
| 			     const char *string1, int length1,
 | ||
| 			     const char *string2, int length2,
 | ||
| 			     int start, int range, struct re_registers *regs,
 | ||
| 			     int stop, int ret_len);
 | ||
| static int re_search_stub (struct re_pattern_buffer *bufp,
 | ||
| 			   const char *string, int length, int start,
 | ||
| 			   int range, int stop, struct re_registers *regs,
 | ||
| 			   int ret_len);
 | ||
| static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch,
 | ||
| 			      int nregs, int regs_allocated);
 | ||
| static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx);
 | ||
| static int check_matching (re_match_context_t *mctx, int fl_longest_match,
 | ||
| 			   int *p_match_first) internal_function;
 | ||
| static int check_halt_state_context (const re_match_context_t *mctx,
 | ||
| 				     const re_dfastate_t *state, int idx)
 | ||
|      internal_function;
 | ||
| static void update_regs (const re_dfa_t *dfa, regmatch_t *pmatch,
 | ||
| 			 regmatch_t *prev_idx_match, int cur_node,
 | ||
| 			 int cur_idx, int nmatch) internal_function;
 | ||
| static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs,
 | ||
| 				      int str_idx, int dest_node, int nregs,
 | ||
| 				      regmatch_t *regs,
 | ||
| 				      re_node_set *eps_via_nodes)
 | ||
|      internal_function;
 | ||
| static reg_errcode_t set_regs (const regex_t *preg,
 | ||
| 			       const re_match_context_t *mctx,
 | ||
| 			       size_t nmatch, regmatch_t *pmatch,
 | ||
| 			       int fl_backtrack) internal_function;
 | ||
| static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs)
 | ||
|      internal_function;
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| static int sift_states_iter_mb (const re_match_context_t *mctx,
 | ||
| 				re_sift_context_t *sctx,
 | ||
| 				int node_idx, int str_idx, int max_str_idx)
 | ||
|      internal_function;
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| static reg_errcode_t sift_states_backward (const re_match_context_t *mctx,
 | ||
| 					   re_sift_context_t *sctx)
 | ||
|      internal_function;
 | ||
| static reg_errcode_t build_sifted_states (const re_match_context_t *mctx,
 | ||
| 					  re_sift_context_t *sctx, int str_idx,
 | ||
| 					  re_node_set *cur_dest)
 | ||
|      internal_function;
 | ||
| static reg_errcode_t update_cur_sifted_state (const re_match_context_t *mctx,
 | ||
| 					      re_sift_context_t *sctx,
 | ||
| 					      int str_idx,
 | ||
| 					      re_node_set *dest_nodes)
 | ||
|      internal_function;
 | ||
| static reg_errcode_t add_epsilon_src_nodes (const re_dfa_t *dfa,
 | ||
| 					    re_node_set *dest_nodes,
 | ||
| 					    const re_node_set *candidates)
 | ||
|      internal_function;
 | ||
| static int check_dst_limits (const re_match_context_t *mctx,
 | ||
| 			     re_node_set *limits,
 | ||
| 			     int dst_node, int dst_idx, int src_node,
 | ||
| 			     int src_idx) internal_function;
 | ||
| static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx,
 | ||
| 					int boundaries, int subexp_idx,
 | ||
| 					int from_node, int bkref_idx)
 | ||
|      internal_function;
 | ||
| static int check_dst_limits_calc_pos (const re_match_context_t *mctx,
 | ||
| 				      int limit, int subexp_idx,
 | ||
| 				      int node, int str_idx,
 | ||
| 				      int bkref_idx) internal_function;
 | ||
| static reg_errcode_t check_subexp_limits (const re_dfa_t *dfa,
 | ||
| 					  re_node_set *dest_nodes,
 | ||
| 					  const re_node_set *candidates,
 | ||
| 					  re_node_set *limits,
 | ||
| 					  struct re_backref_cache_entry *bkref_ents,
 | ||
| 					  int str_idx) internal_function;
 | ||
| static reg_errcode_t sift_states_bkref (const re_match_context_t *mctx,
 | ||
| 					re_sift_context_t *sctx,
 | ||
| 					int str_idx, const re_node_set *candidates)
 | ||
|      internal_function;
 | ||
| static reg_errcode_t merge_state_array (const re_dfa_t *dfa,
 | ||
| 					re_dfastate_t **dst,
 | ||
| 					re_dfastate_t **src, int num)
 | ||
|      internal_function;
 | ||
| static re_dfastate_t *find_recover_state (reg_errcode_t *err,
 | ||
| 					 re_match_context_t *mctx) internal_function;
 | ||
| static re_dfastate_t *transit_state (reg_errcode_t *err,
 | ||
| 				     re_match_context_t *mctx,
 | ||
| 				     re_dfastate_t *state) internal_function;
 | ||
| static re_dfastate_t *merge_state_with_log (reg_errcode_t *err,
 | ||
| 					    re_match_context_t *mctx,
 | ||
| 					    re_dfastate_t *next_state)
 | ||
|      internal_function;
 | ||
| static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx,
 | ||
| 						re_node_set *cur_nodes,
 | ||
| 						int str_idx) internal_function;
 | ||
| #if 0
 | ||
| static re_dfastate_t *transit_state_sb (reg_errcode_t *err,
 | ||
| 					re_match_context_t *mctx,
 | ||
| 					re_dfastate_t *pstate)
 | ||
|      internal_function;
 | ||
| #endif
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| static reg_errcode_t transit_state_mb (re_match_context_t *mctx,
 | ||
| 				       re_dfastate_t *pstate)
 | ||
|      internal_function;
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| static reg_errcode_t transit_state_bkref (re_match_context_t *mctx,
 | ||
| 					  const re_node_set *nodes)
 | ||
|      internal_function;
 | ||
| static reg_errcode_t get_subexp (re_match_context_t *mctx,
 | ||
| 				 int bkref_node, int bkref_str_idx)
 | ||
|      internal_function;
 | ||
| static reg_errcode_t get_subexp_sub (re_match_context_t *mctx,
 | ||
| 				     const re_sub_match_top_t *sub_top,
 | ||
| 				     re_sub_match_last_t *sub_last,
 | ||
| 				     int bkref_node, int bkref_str)
 | ||
|      internal_function;
 | ||
| static int find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes,
 | ||
| 			     int subexp_idx, int type) internal_function;
 | ||
| static reg_errcode_t check_arrival (re_match_context_t *mctx,
 | ||
| 				    state_array_t *path, int top_node,
 | ||
| 				    int top_str, int last_node, int last_str,
 | ||
| 				    int type) internal_function;
 | ||
| static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx,
 | ||
| 						   int str_idx,
 | ||
| 						   re_node_set *cur_nodes,
 | ||
| 						   re_node_set *next_nodes)
 | ||
|      internal_function;
 | ||
| static reg_errcode_t check_arrival_expand_ecl (const re_dfa_t *dfa,
 | ||
| 					       re_node_set *cur_nodes,
 | ||
| 					       int ex_subexp, int type)
 | ||
|      internal_function;
 | ||
| static reg_errcode_t check_arrival_expand_ecl_sub (const re_dfa_t *dfa,
 | ||
| 						   re_node_set *dst_nodes,
 | ||
| 						   int target, int ex_subexp,
 | ||
| 						   int type) internal_function;
 | ||
| static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx,
 | ||
| 					 re_node_set *cur_nodes, int cur_str,
 | ||
| 					 int subexp_num, int type)
 | ||
|      internal_function;
 | ||
| static int build_trtable (const re_dfa_t *dfa,
 | ||
| 			  re_dfastate_t *state) internal_function;
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| static int check_node_accept_bytes (const re_dfa_t *dfa, int node_idx,
 | ||
| 				    const re_string_t *input, int idx)
 | ||
|      internal_function;
 | ||
| # ifdef _LIBC
 | ||
| static unsigned int find_collation_sequence_value (const unsigned char *mbs,
 | ||
| 						   size_t name_len)
 | ||
|      internal_function;
 | ||
| # endif /* _LIBC */
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| static int group_nodes_into_DFAstates (const re_dfa_t *dfa,
 | ||
| 				       const re_dfastate_t *state,
 | ||
| 				       re_node_set *states_node,
 | ||
| 				       bitset_t *states_ch) internal_function;
 | ||
| static int check_node_accept (const re_match_context_t *mctx,
 | ||
| 			      const re_token_t *node, int idx)
 | ||
|      internal_function;
 | ||
| static reg_errcode_t extend_buffers (re_match_context_t *mctx)
 | ||
|      internal_function;
 | ||
| 
 | ||
| /* Entry point for POSIX code.  */
 | ||
| 
 | ||
| /* regexec searches for a given pattern, specified by PREG, in the
 | ||
|    string STRING.
 | ||
| 
 | ||
|    If NMATCH is zero or REG_NOSUB was set in the cflags argument to
 | ||
|    `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
 | ||
|    least NMATCH elements, and we set them to the offsets of the
 | ||
|    corresponding matched substrings.
 | ||
| 
 | ||
|    EFLAGS specifies `execution flags' which affect matching: if
 | ||
|    REG_NOTBOL is set, then ^ does not match at the beginning of the
 | ||
|    string; if REG_NOTEOL is set, then $ does not match at the end.
 | ||
| 
 | ||
|    We return 0 if we find a match and REG_NOMATCH if not.  */
 | ||
| 
 | ||
| int
 | ||
| regexec (
 | ||
| 	const regex_t *__restrict preg,
 | ||
| 	const char *__restrict string,
 | ||
| 	size_t nmatch,
 | ||
| 	regmatch_t pmatch[],
 | ||
| 	int eflags)
 | ||
| {
 | ||
|   reg_errcode_t err;
 | ||
|   int start, length;
 | ||
| 
 | ||
|   if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND))
 | ||
|     return REG_BADPAT;
 | ||
| 
 | ||
|   if (eflags & REG_STARTEND)
 | ||
|     {
 | ||
|       start = pmatch[0].rm_so;
 | ||
|       length = pmatch[0].rm_eo;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       start = 0;
 | ||
|       length = strlen (string);
 | ||
|     }
 | ||
| 
 | ||
|   __libc_lock_lock (dfa->lock);
 | ||
|   if (preg->no_sub)
 | ||
|     err = re_search_internal (preg, string, length, start, length - start,
 | ||
| 			      length, 0, NULL, eflags);
 | ||
|   else
 | ||
|     err = re_search_internal (preg, string, length, start, length - start,
 | ||
| 			      length, nmatch, pmatch, eflags);
 | ||
|   __libc_lock_unlock (dfa->lock);
 | ||
|   return err != REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| #ifdef _LIBC
 | ||
| # include <shlib-compat.h>
 | ||
| versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4);
 | ||
| 
 | ||
| # if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4)
 | ||
| __typeof__ (__regexec) __compat_regexec;
 | ||
| 
 | ||
| int
 | ||
| attribute_compat_text_section
 | ||
| __compat_regexec (const regex_t *__restrict preg,
 | ||
| 		  const char *__restrict string, size_t nmatch,
 | ||
| 		  regmatch_t pmatch[], int eflags)
 | ||
| {
 | ||
|   return regexec (preg, string, nmatch, pmatch,
 | ||
| 		  eflags & (REG_NOTBOL | REG_NOTEOL));
 | ||
| }
 | ||
| compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0);
 | ||
| # endif
 | ||
| #endif
 | ||
| 
 | ||
| /* Entry points for GNU code.  */
 | ||
| 
 | ||
| /* re_match, re_search, re_match_2, re_search_2
 | ||
| 
 | ||
|    The former two functions operate on STRING with length LENGTH,
 | ||
|    while the later two operate on concatenation of STRING1 and STRING2
 | ||
|    with lengths LENGTH1 and LENGTH2, respectively.
 | ||
| 
 | ||
|    re_match() matches the compiled pattern in BUFP against the string,
 | ||
|    starting at index START.
 | ||
| 
 | ||
|    re_search() first tries matching at index START, then it tries to match
 | ||
|    starting from index START + 1, and so on.  The last start position tried
 | ||
|    is START + RANGE.  (Thus RANGE = 0 forces re_search to operate the same
 | ||
|    way as re_match().)
 | ||
| 
 | ||
|    The parameter STOP of re_{match,search}_2 specifies that no match exceeding
 | ||
|    the first STOP characters of the concatenation of the strings should be
 | ||
|    concerned.
 | ||
| 
 | ||
|    If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match
 | ||
|    and all groups is stroed in REGS.  (For the "_2" variants, the offsets are
 | ||
|    computed relative to the concatenation, not relative to the individual
 | ||
|    strings.)
 | ||
| 
 | ||
|    On success, re_match* functions return the length of the match, re_search*
 | ||
|    return the position of the start of the match.  Return value -1 means no
 | ||
|    match was found and -2 indicates an internal error.  */
 | ||
| 
 | ||
| int
 | ||
| re_match (struct re_pattern_buffer *bufp,
 | ||
| 	  const char *string,
 | ||
| 	  int length,
 | ||
| 	  int start,
 | ||
| 	  struct re_registers *regs)
 | ||
| {
 | ||
|   return re_search_stub (bufp, string, length, start, 0, length, regs, 1);
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__re_match, re_match)
 | ||
| #endif
 | ||
| 
 | ||
| int
 | ||
| re_search (struct re_pattern_buffer *bufp,
 | ||
| 	   const char *string,
 | ||
| 	   int length, int start, int range,
 | ||
| 	   struct re_registers *regs)
 | ||
| {
 | ||
|   return re_search_stub (bufp, string, length, start, range, length, regs, 0);
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__re_search, re_search)
 | ||
| #endif
 | ||
| 
 | ||
| int
 | ||
| re_match_2 (struct re_pattern_buffer *bufp,
 | ||
| 	    const char *string1, int length1,
 | ||
| 	    const char *string2, int length2, int start,
 | ||
| 	    struct re_registers *regs, int stop)
 | ||
| {
 | ||
|   return re_search_2_stub (bufp, string1, length1, string2, length2,
 | ||
| 			   start, 0, regs, stop, 1);
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__re_match_2, re_match_2)
 | ||
| #endif
 | ||
| 
 | ||
| int
 | ||
| re_search_2 (struct re_pattern_buffer *bufp,
 | ||
| 	     const char *string1, int length1,
 | ||
| 	     const char *string2, int length2, int start,
 | ||
| 	     int range, struct re_registers *regs,  int stop)
 | ||
| {
 | ||
|   return re_search_2_stub (bufp, string1, length1, string2, length2,
 | ||
| 			   start, range, regs, stop, 0);
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__re_search_2, re_search_2)
 | ||
| #endif
 | ||
| 
 | ||
| static int
 | ||
| re_search_2_stub (struct re_pattern_buffer *bufp,
 | ||
| 		  const char *string1, int length1,
 | ||
| 		  const char *string2, int length2, int start,
 | ||
| 		  int range, struct re_registers *regs,
 | ||
| 		  int stop, int ret_len)
 | ||
| {
 | ||
|   const char *str;
 | ||
|   int rval;
 | ||
|   int len = length1 + length2;
 | ||
|   int free_str = 0;
 | ||
| 
 | ||
|   if (BE (length1 < 0 || length2 < 0 || stop < 0, 0))
 | ||
|     return -2;
 | ||
| 
 | ||
|   /* Concatenate the strings.  */
 | ||
|   if (length2 > 0)
 | ||
|     if (length1 > 0)
 | ||
|       {
 | ||
| 	char *s = re_malloc (char, len);
 | ||
| 
 | ||
| 	if (BE (s == NULL, 0))
 | ||
| 	  return -2;
 | ||
| 	memcpy (s, string1, length1);
 | ||
| 	memcpy (s + length1, string2, length2);
 | ||
| 	str = s;
 | ||
| 	free_str = 1;
 | ||
|       }
 | ||
|     else
 | ||
|       str = string2;
 | ||
|   else
 | ||
|     str = string1;
 | ||
| 
 | ||
|   rval = re_search_stub (bufp, str, len, start, range, stop, regs, ret_len);
 | ||
|   if (free_str)
 | ||
|     re_free ((char *) str);
 | ||
|   return rval;
 | ||
| }
 | ||
| 
 | ||
| /* The parameters have the same meaning as those of re_search.
 | ||
|    Additional parameters:
 | ||
|    If RET_LEN is nonzero the length of the match is returned (re_match style);
 | ||
|    otherwise the position of the match is returned.  */
 | ||
| 
 | ||
| static int
 | ||
| re_search_stub (struct re_pattern_buffer *bufp,
 | ||
| 		const char *string, int length, int start,
 | ||
| 		int range, int stop,
 | ||
| 		struct re_registers *regs, int ret_len)
 | ||
| {
 | ||
|   reg_errcode_t result;
 | ||
|   regmatch_t *pmatch;
 | ||
|   int nregs, rval;
 | ||
|   int eflags = 0;
 | ||
| 
 | ||
|   /* Check for out-of-range.  */
 | ||
|   if (BE (start < 0 || start > length, 0))
 | ||
|     return -1;
 | ||
|   if (BE (start + range > length, 0))
 | ||
|     range = length - start;
 | ||
|   else if (BE (start + range < 0, 0))
 | ||
|     range = -start;
 | ||
| 
 | ||
|   __libc_lock_lock (dfa->lock);
 | ||
| 
 | ||
|   eflags |= (bufp->not_bol) ? REG_NOTBOL : 0;
 | ||
|   eflags |= (bufp->not_eol) ? REG_NOTEOL : 0;
 | ||
| 
 | ||
|   /* Compile fastmap if we haven't yet.  */
 | ||
|   if (range > 0 && bufp->fastmap != NULL && !bufp->fastmap_accurate)
 | ||
|     re_compile_fastmap (bufp);
 | ||
| 
 | ||
|   if (BE (bufp->no_sub, 0))
 | ||
|     regs = NULL;
 | ||
| 
 | ||
|   /* We need at least 1 register.  */
 | ||
|   if (regs == NULL)
 | ||
|     nregs = 1;
 | ||
|   else if (BE (bufp->regs_allocated == REGS_FIXED &&
 | ||
| 	       regs->num_regs < bufp->re_nsub + 1, 0))
 | ||
|     {
 | ||
|       nregs = regs->num_regs;
 | ||
|       if (BE (nregs < 1, 0))
 | ||
| 	{
 | ||
| 	  /* Nothing can be copied to regs.  */
 | ||
| 	  regs = NULL;
 | ||
| 	  nregs = 1;
 | ||
| 	}
 | ||
|     }
 | ||
|   else
 | ||
|     nregs = bufp->re_nsub + 1;
 | ||
|   pmatch = re_malloc (regmatch_t, nregs);
 | ||
|   if (BE (pmatch == NULL, 0))
 | ||
|     {
 | ||
|       rval = -2;
 | ||
|       goto out;
 | ||
|     }
 | ||
| 
 | ||
|   result = re_search_internal (bufp, string, length, start, range, stop,
 | ||
| 			       nregs, pmatch, eflags);
 | ||
| 
 | ||
|   rval = 0;
 | ||
| 
 | ||
|   /* I hope we needn't fill their regs with -1's when no match was found.  */
 | ||
|   if (result != REG_NOERROR)
 | ||
|     rval = -1;
 | ||
|   else if (regs != NULL)
 | ||
|     {
 | ||
|       /* If caller wants register contents data back, copy them.  */
 | ||
|       bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs,
 | ||
| 					   bufp->regs_allocated);
 | ||
|       if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0))
 | ||
| 	rval = -2;
 | ||
|     }
 | ||
| 
 | ||
|   if (BE (rval == 0, 1))
 | ||
|     {
 | ||
|       if (ret_len)
 | ||
| 	{
 | ||
| 	  assert (pmatch[0].rm_so == start);
 | ||
| 	  rval = pmatch[0].rm_eo - start;
 | ||
| 	}
 | ||
|       else
 | ||
| 	rval = pmatch[0].rm_so;
 | ||
|     }
 | ||
|   re_free (pmatch);
 | ||
|  out:
 | ||
|   __libc_lock_unlock (dfa->lock);
 | ||
|   return rval;
 | ||
| }
 | ||
| 
 | ||
| static unsigned
 | ||
| re_copy_regs (struct re_registers *regs,
 | ||
| 	      regmatch_t *pmatch,
 | ||
| 	      int nregs, int regs_allocated)
 | ||
| {
 | ||
|   int rval = REGS_REALLOCATE;
 | ||
|   int i;
 | ||
|   int need_regs = nregs + 1;
 | ||
|   /* We need one extra element beyond `num_regs' for the `-1' marker GNU code
 | ||
|      uses.  */
 | ||
| 
 | ||
|   /* Have the register data arrays been allocated?  */
 | ||
|   if (regs_allocated == REGS_UNALLOCATED)
 | ||
|     { /* No.  So allocate them with malloc.  */
 | ||
|       regs->start = re_malloc (regoff_t, need_regs);
 | ||
|       if (BE (regs->start == NULL, 0))
 | ||
| 	return REGS_UNALLOCATED;
 | ||
|       regs->end = re_malloc (regoff_t, need_regs);
 | ||
|       if (BE (regs->end == NULL, 0))
 | ||
| 	{
 | ||
| 	  re_free (regs->start);
 | ||
| 	  return REGS_UNALLOCATED;
 | ||
| 	}
 | ||
|       regs->num_regs = need_regs;
 | ||
|     }
 | ||
|   else if (regs_allocated == REGS_REALLOCATE)
 | ||
|     { /* Yes.  If we need more elements than were already
 | ||
| 	 allocated, reallocate them.  If we need fewer, just
 | ||
| 	 leave it alone.  */
 | ||
|       if (BE (need_regs > regs->num_regs, 0))
 | ||
| 	{
 | ||
| 	  regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs);
 | ||
| 	  regoff_t *new_end;
 | ||
| 	  if (BE (new_start == NULL, 0))
 | ||
| 	    return REGS_UNALLOCATED;
 | ||
| 	  new_end = re_realloc (regs->end, regoff_t, need_regs);
 | ||
| 	  if (BE (new_end == NULL, 0))
 | ||
| 	    {
 | ||
| 	      re_free (new_start);
 | ||
| 	      return REGS_UNALLOCATED;
 | ||
| 	    }
 | ||
| 	  regs->start = new_start;
 | ||
| 	  regs->end = new_end;
 | ||
| 	  regs->num_regs = need_regs;
 | ||
| 	}
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       assert (regs_allocated == REGS_FIXED);
 | ||
|       /* This function may not be called with REGS_FIXED and nregs too big.  */
 | ||
|       assert (regs->num_regs >= nregs);
 | ||
|       rval = REGS_FIXED;
 | ||
|     }
 | ||
| 
 | ||
|   /* Copy the regs.  */
 | ||
|   for (i = 0; i < nregs; ++i)
 | ||
|     {
 | ||
|       regs->start[i] = pmatch[i].rm_so;
 | ||
|       regs->end[i] = pmatch[i].rm_eo;
 | ||
|     }
 | ||
|   for ( ; i < regs->num_regs; ++i)
 | ||
|     regs->start[i] = regs->end[i] = -1;
 | ||
| 
 | ||
|   return rval;
 | ||
| }
 | ||
| 
 | ||
| /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
 | ||
|    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
 | ||
|    this memory for recording register information.  STARTS and ENDS
 | ||
|    must be allocated using the malloc library routine, and must each
 | ||
|    be at least NUM_REGS * sizeof (regoff_t) bytes long.
 | ||
| 
 | ||
|    If NUM_REGS == 0, then subsequent matches should allocate their own
 | ||
|    register data.
 | ||
| 
 | ||
|    Unless this function is called, the first search or match using
 | ||
|    PATTERN_BUFFER will allocate its own register data, without
 | ||
|    freeing the old data.  */
 | ||
| 
 | ||
| void
 | ||
| re_set_registers (struct re_pattern_buffer *bufp,
 | ||
| 		  struct re_registers *regs,
 | ||
| 		  unsigned num_regs,
 | ||
| 		  regoff_t *starts,
 | ||
| 		  regoff_t *ends)
 | ||
| {
 | ||
|   if (num_regs)
 | ||
|     {
 | ||
|       bufp->regs_allocated = REGS_REALLOCATE;
 | ||
|       regs->num_regs = num_regs;
 | ||
|       regs->start = starts;
 | ||
|       regs->end = ends;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       bufp->regs_allocated = REGS_UNALLOCATED;
 | ||
|       regs->num_regs = 0;
 | ||
|       regs->start = regs->end = (regoff_t *) 0;
 | ||
|     }
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__re_set_registers, re_set_registers)
 | ||
| #endif
 | ||
| 
 | ||
| /* Entry points compatible with 4.2 BSD regex library.  We don't define
 | ||
|    them unless specifically requested.  */
 | ||
| 
 | ||
| #if defined _REGEX_RE_COMP || defined _LIBC
 | ||
| int
 | ||
| # ifdef _LIBC
 | ||
| weak_function
 | ||
| # endif
 | ||
| re_exec (s)
 | ||
|      const char *s;
 | ||
| {
 | ||
|   return 0 == regexec (&re_comp_buf, s, 0, NULL, 0);
 | ||
| }
 | ||
| #endif /* _REGEX_RE_COMP */
 | ||
| 
 | ||
| /* Internal entry point.  */
 | ||
| 
 | ||
| /* Searches for a compiled pattern PREG in the string STRING, whose
 | ||
|    length is LENGTH.  NMATCH, PMATCH, and EFLAGS have the same
 | ||
|    mingings with regexec.  START, and RANGE have the same meanings
 | ||
|    with re_search.
 | ||
|    Return REG_NOERROR if we find a match, and REG_NOMATCH if not,
 | ||
|    otherwise return the error code.
 | ||
|    Note: We assume front end functions already check ranges.
 | ||
|    (START + RANGE >= 0 && START + RANGE <= LENGTH)  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| re_search_internal (const regex_t *preg,
 | ||
| 		    const char *string,
 | ||
| 		    int length, int start, int range, int stop,
 | ||
| 		    size_t nmatch, regmatch_t pmatch[],
 | ||
| 		    int eflags)
 | ||
| {
 | ||
|   reg_errcode_t err;
 | ||
|   const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer;
 | ||
|   int left_lim, right_lim, incr;
 | ||
|   int fl_longest_match, match_first, match_kind, match_last = -1;
 | ||
|   int extra_nmatch;
 | ||
|   int sb, ch;
 | ||
| #if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)
 | ||
|   re_match_context_t mctx = { .dfa = dfa };
 | ||
| #else
 | ||
|   re_match_context_t mctx;
 | ||
| #endif
 | ||
|   char *fastmap = (preg->fastmap != NULL && preg->fastmap_accurate
 | ||
| 		   && range && !preg->can_be_null) ? preg->fastmap : NULL;
 | ||
|   RE_TRANSLATE_TYPE t = preg->translate;
 | ||
| 
 | ||
| #if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L))
 | ||
|   memset (&mctx, '\0', sizeof (re_match_context_t));
 | ||
|   mctx.dfa = dfa;
 | ||
| #endif
 | ||
| 
 | ||
|   extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0;
 | ||
|   nmatch -= extra_nmatch;
 | ||
| 
 | ||
|   /* Check if the DFA haven't been compiled.  */
 | ||
|   if (BE (preg->used == 0 || dfa->init_state == NULL
 | ||
| 	  || dfa->init_state_word == NULL || dfa->init_state_nl == NULL
 | ||
| 	  || dfa->init_state_begbuf == NULL, 0))
 | ||
|     return REG_NOMATCH;
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
|   /* We assume front-end functions already check them.  */
 | ||
|   assert (start + range >= 0 && start + range <= length);
 | ||
| #endif
 | ||
| 
 | ||
|   /* If initial states with non-begbuf contexts have no elements,
 | ||
|      the regex must be anchored.  If preg->newline_anchor is set,
 | ||
|      we'll never use init_state_nl, so do not check it.  */
 | ||
|   if (dfa->init_state->nodes.nelem == 0
 | ||
|       && dfa->init_state_word->nodes.nelem == 0
 | ||
|       && (dfa->init_state_nl->nodes.nelem == 0
 | ||
| 	  || !preg->newline_anchor))
 | ||
|     {
 | ||
|       if (start != 0 && start + range != 0)
 | ||
| 	return REG_NOMATCH;
 | ||
|       start = range = 0;
 | ||
|     }
 | ||
| 
 | ||
|   /* We must check the longest matching, if nmatch > 0.  */
 | ||
|   fl_longest_match = (nmatch != 0 || dfa->nbackref);
 | ||
| 
 | ||
|   err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1,
 | ||
| 			    preg->translate, preg->syntax & RE_ICASE, dfa);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     goto free_return;
 | ||
|   mctx.input.stop = stop;
 | ||
|   mctx.input.raw_stop = stop;
 | ||
|   mctx.input.newline_anchor = preg->newline_anchor;
 | ||
| 
 | ||
|   err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     goto free_return;
 | ||
| 
 | ||
|   /* We will log all the DFA states through which the dfa pass,
 | ||
|      if nmatch > 1, or this dfa has "multibyte node", which is a
 | ||
|      back-reference or a node which can accept multibyte character or
 | ||
|      multi character collating element.  */
 | ||
|   if (nmatch > 1 || dfa->has_mb_node)
 | ||
|     {
 | ||
|       /* Avoid overflow.  */
 | ||
|       if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= mctx.input.bufs_len, 0))
 | ||
| 	{
 | ||
| 	  err = REG_ESPACE;
 | ||
| 	  goto free_return;
 | ||
| 	}
 | ||
| 
 | ||
|       mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1);
 | ||
|       if (BE (mctx.state_log == NULL, 0))
 | ||
| 	{
 | ||
| 	  err = REG_ESPACE;
 | ||
| 	  goto free_return;
 | ||
| 	}
 | ||
|     }
 | ||
|   else
 | ||
|     mctx.state_log = NULL;
 | ||
| 
 | ||
|   match_first = start;
 | ||
|   mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
 | ||
| 			   : CONTEXT_NEWLINE | CONTEXT_BEGBUF;
 | ||
| 
 | ||
|   /* Check incrementally whether of not the input string match.  */
 | ||
|   incr = (range < 0) ? -1 : 1;
 | ||
|   left_lim = (range < 0) ? start + range : start;
 | ||
|   right_lim = (range < 0) ? start : start + range;
 | ||
|   sb = dfa->mb_cur_max == 1;
 | ||
|   match_kind =
 | ||
|     (fastmap
 | ||
|      ? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0)
 | ||
| 	| (range >= 0 ? 2 : 0)
 | ||
| 	| (t != NULL ? 1 : 0))
 | ||
|      : 8);
 | ||
| 
 | ||
|   for (;; match_first += incr)
 | ||
|     {
 | ||
|       err = REG_NOMATCH;
 | ||
|       if (match_first < left_lim || right_lim < match_first)
 | ||
| 	goto free_return;
 | ||
| 
 | ||
|       /* Advance as rapidly as possible through the string, until we
 | ||
| 	 find a plausible place to start matching.  This may be done
 | ||
| 	 with varying efficiency, so there are various possibilities:
 | ||
| 	 only the most common of them are specialized, in order to
 | ||
| 	 save on code size.  We use a switch statement for speed.  */
 | ||
|       switch (match_kind)
 | ||
| 	{
 | ||
| 	case 8:
 | ||
| 	  /* No fastmap.  */
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case 7:
 | ||
| 	  /* Fastmap with single-byte translation, match forward.  */
 | ||
| 	  while (BE (match_first < right_lim, 1)
 | ||
| 		 && !fastmap[t[(unsigned char) string[match_first]]])
 | ||
| 	    ++match_first;
 | ||
| 	  goto forward_match_found_start_or_reached_end;
 | ||
| 
 | ||
| 	case 6:
 | ||
| 	  /* Fastmap without translation, match forward.  */
 | ||
| 	  while (BE (match_first < right_lim, 1)
 | ||
| 		 && !fastmap[(unsigned char) string[match_first]])
 | ||
| 	    ++match_first;
 | ||
| 
 | ||
| 	forward_match_found_start_or_reached_end:
 | ||
| 	  if (BE (match_first == right_lim, 0))
 | ||
| 	    {
 | ||
| 	      ch = match_first >= length
 | ||
| 		       ? 0 : (unsigned char) string[match_first];
 | ||
| 	      if (!fastmap[t ? t[ch] : ch])
 | ||
| 		goto free_return;
 | ||
| 	    }
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case 4:
 | ||
| 	case 5:
 | ||
| 	  /* Fastmap without multi-byte translation, match backwards.  */
 | ||
| 	  while (match_first >= left_lim)
 | ||
| 	    {
 | ||
| 	      ch = match_first >= length
 | ||
| 		       ? 0 : (unsigned char) string[match_first];
 | ||
| 	      if (fastmap[t ? t[ch] : ch])
 | ||
| 		break;
 | ||
| 	      --match_first;
 | ||
| 	    }
 | ||
| 	  if (match_first < left_lim)
 | ||
| 	    goto free_return;
 | ||
| 	  break;
 | ||
| 
 | ||
| 	default:
 | ||
| 	  /* In this case, we can't determine easily the current byte,
 | ||
| 	     since it might be a component byte of a multibyte
 | ||
| 	     character.  Then we use the constructed buffer instead.  */
 | ||
| 	  for (;;)
 | ||
| 	    {
 | ||
| 	      /* If MATCH_FIRST is out of the valid range, reconstruct the
 | ||
| 		 buffers.  */
 | ||
| 	      unsigned int offset = match_first - mctx.input.raw_mbs_idx;
 | ||
| 	      if (BE (offset >= (unsigned int) mctx.input.valid_raw_len, 0))
 | ||
| 		{
 | ||
| 		  err = re_string_reconstruct (&mctx.input, match_first,
 | ||
| 					       eflags);
 | ||
| 		  if (BE (err != REG_NOERROR, 0))
 | ||
| 		    goto free_return;
 | ||
| 
 | ||
| 		  offset = match_first - mctx.input.raw_mbs_idx;
 | ||
| 		}
 | ||
| 	      /* If MATCH_FIRST is out of the buffer, leave it as '\0'.
 | ||
| 		 Note that MATCH_FIRST must not be smaller than 0.  */
 | ||
| 	      ch = (match_first >= length
 | ||
| 		    ? 0 : re_string_byte_at (&mctx.input, offset));
 | ||
| 	      if (fastmap[ch])
 | ||
| 		break;
 | ||
| 	      match_first += incr;
 | ||
| 	      if (match_first < left_lim || match_first > right_lim)
 | ||
| 		{
 | ||
| 		  err = REG_NOMATCH;
 | ||
| 		  goto free_return;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	  break;
 | ||
| 	}
 | ||
| 
 | ||
|       /* Reconstruct the buffers so that the matcher can assume that
 | ||
| 	 the matching starts from the beginning of the buffer.  */
 | ||
|       err = re_string_reconstruct (&mctx.input, match_first, eflags);
 | ||
|       if (BE (err != REG_NOERROR, 0))
 | ||
| 	goto free_return;
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|      /* Don't consider this char as a possible match start if it part,
 | ||
| 	yet isn't the head, of a multibyte character.  */
 | ||
|       if (!sb && !re_string_first_byte (&mctx.input, 0))
 | ||
| 	continue;
 | ||
| #endif
 | ||
| 
 | ||
|       /* It seems to be appropriate one, then use the matcher.  */
 | ||
|       /* We assume that the matching starts from 0.  */
 | ||
|       mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0;
 | ||
|       match_last = check_matching (&mctx, fl_longest_match,
 | ||
| 				   range >= 0 ? &match_first : NULL);
 | ||
|       if (match_last != -1)
 | ||
| 	{
 | ||
| 	  if (BE (match_last == -2, 0))
 | ||
| 	    {
 | ||
| 	      err = REG_ESPACE;
 | ||
| 	      goto free_return;
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      mctx.match_last = match_last;
 | ||
| 	      if ((!preg->no_sub && nmatch > 1) || dfa->nbackref)
 | ||
| 		{
 | ||
| 		  re_dfastate_t *pstate = mctx.state_log[match_last];
 | ||
| 		  mctx.last_node = check_halt_state_context (&mctx, pstate,
 | ||
| 							     match_last);
 | ||
| 		}
 | ||
| 	      if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match)
 | ||
| 		  || dfa->nbackref)
 | ||
| 		{
 | ||
| 		  err = prune_impossible_nodes (&mctx);
 | ||
| 		  if (err == REG_NOERROR)
 | ||
| 		    break;
 | ||
| 		  if (BE (err != REG_NOMATCH, 0))
 | ||
| 		    goto free_return;
 | ||
| 		  match_last = -1;
 | ||
| 		}
 | ||
| 	      else
 | ||
| 		break; /* We found a match.  */
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       match_ctx_clean (&mctx);
 | ||
|     }
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
|   assert (match_last != -1);
 | ||
|   assert (err == REG_NOERROR);
 | ||
| #endif
 | ||
| 
 | ||
|   /* Set pmatch[] if we need.  */
 | ||
|   if (nmatch > 0)
 | ||
|     {
 | ||
|       int reg_idx;
 | ||
| 
 | ||
|       /* Initialize registers.  */
 | ||
|       for (reg_idx = 1; reg_idx < nmatch; ++reg_idx)
 | ||
| 	pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1;
 | ||
| 
 | ||
|       /* Set the points where matching start/end.  */
 | ||
|       pmatch[0].rm_so = 0;
 | ||
|       pmatch[0].rm_eo = mctx.match_last;
 | ||
| 
 | ||
|       if (!preg->no_sub && nmatch > 1)
 | ||
| 	{
 | ||
| 	  err = set_regs (preg, &mctx, nmatch, pmatch,
 | ||
| 			  dfa->has_plural_match && dfa->nbackref > 0);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    goto free_return;
 | ||
| 	}
 | ||
| 
 | ||
|       /* At last, add the offset to the each registers, since we slided
 | ||
| 	 the buffers so that we could assume that the matching starts
 | ||
| 	 from 0.  */
 | ||
|       for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
 | ||
| 	if (pmatch[reg_idx].rm_so != -1)
 | ||
| 	  {
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| 	    if (BE (mctx.input.offsets_needed != 0, 0))
 | ||
| 	      {
 | ||
| 		pmatch[reg_idx].rm_so =
 | ||
| 		  (pmatch[reg_idx].rm_so == mctx.input.valid_len
 | ||
| 		   ? mctx.input.valid_raw_len
 | ||
| 		   : mctx.input.offsets[pmatch[reg_idx].rm_so]);
 | ||
| 		pmatch[reg_idx].rm_eo =
 | ||
| 		  (pmatch[reg_idx].rm_eo == mctx.input.valid_len
 | ||
| 		   ? mctx.input.valid_raw_len
 | ||
| 		   : mctx.input.offsets[pmatch[reg_idx].rm_eo]);
 | ||
| 	      }
 | ||
| #else
 | ||
| 	    assert (mctx.input.offsets_needed == 0);
 | ||
| #endif
 | ||
| 	    pmatch[reg_idx].rm_so += match_first;
 | ||
| 	    pmatch[reg_idx].rm_eo += match_first;
 | ||
| 	  }
 | ||
|       for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx)
 | ||
| 	{
 | ||
| 	  pmatch[nmatch + reg_idx].rm_so = -1;
 | ||
| 	  pmatch[nmatch + reg_idx].rm_eo = -1;
 | ||
| 	}
 | ||
| 
 | ||
|       if (dfa->subexp_map)
 | ||
| 	for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++)
 | ||
| 	  if (dfa->subexp_map[reg_idx] != reg_idx)
 | ||
| 	    {
 | ||
| 	      pmatch[reg_idx + 1].rm_so
 | ||
| 		= pmatch[dfa->subexp_map[reg_idx] + 1].rm_so;
 | ||
| 	      pmatch[reg_idx + 1].rm_eo
 | ||
| 		= pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo;
 | ||
| 	    }
 | ||
|     }
 | ||
| 
 | ||
|  free_return:
 | ||
|   re_free (mctx.state_log);
 | ||
|   if (dfa->nbackref)
 | ||
|     match_ctx_free (&mctx);
 | ||
|   re_string_destruct (&mctx.input);
 | ||
|   return err;
 | ||
| }
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| prune_impossible_nodes (re_match_context_t *mctx)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   int halt_node, match_last;
 | ||
|   reg_errcode_t ret;
 | ||
|   re_dfastate_t **sifted_states;
 | ||
|   re_dfastate_t **lim_states = NULL;
 | ||
|   re_sift_context_t sctx;
 | ||
| #ifdef DEBUG
 | ||
|   assert (mctx->state_log != NULL);
 | ||
| #endif
 | ||
|   match_last = mctx->match_last;
 | ||
|   halt_node = mctx->last_node;
 | ||
| 
 | ||
|   /* Avoid overflow.  */
 | ||
|   if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= match_last, 0))
 | ||
|     return REG_ESPACE;
 | ||
| 
 | ||
|   sifted_states = re_malloc (re_dfastate_t *, match_last + 1);
 | ||
|   if (BE (sifted_states == NULL, 0))
 | ||
|     {
 | ||
|       ret = REG_ESPACE;
 | ||
|       goto free_return;
 | ||
|     }
 | ||
|   if (dfa->nbackref)
 | ||
|     {
 | ||
|       lim_states = re_malloc (re_dfastate_t *, match_last + 1);
 | ||
|       if (BE (lim_states == NULL, 0))
 | ||
| 	{
 | ||
| 	  ret = REG_ESPACE;
 | ||
| 	  goto free_return;
 | ||
| 	}
 | ||
|       while (1)
 | ||
| 	{
 | ||
| 	  memset (lim_states, '\0',
 | ||
| 		  sizeof (re_dfastate_t *) * (match_last + 1));
 | ||
| 	  sift_ctx_init (&sctx, sifted_states, lim_states, halt_node,
 | ||
| 			 match_last);
 | ||
| 	  ret = sift_states_backward (mctx, &sctx);
 | ||
| 	  re_node_set_free (&sctx.limits);
 | ||
| 	  if (BE (ret != REG_NOERROR, 0))
 | ||
| 	      goto free_return;
 | ||
| 	  if (sifted_states[0] != NULL || lim_states[0] != NULL)
 | ||
| 	    break;
 | ||
| 	  do
 | ||
| 	    {
 | ||
| 	      --match_last;
 | ||
| 	      if (match_last < 0)
 | ||
| 		{
 | ||
| 		  ret = REG_NOMATCH;
 | ||
| 		  goto free_return;
 | ||
| 		}
 | ||
| 	    } while (mctx->state_log[match_last] == NULL
 | ||
| 		     || !mctx->state_log[match_last]->halt);
 | ||
| 	  halt_node = check_halt_state_context (mctx,
 | ||
| 						mctx->state_log[match_last],
 | ||
| 						match_last);
 | ||
| 	}
 | ||
|       ret = merge_state_array (dfa, sifted_states, lim_states,
 | ||
| 			       match_last + 1);
 | ||
|       re_free (lim_states);
 | ||
|       lim_states = NULL;
 | ||
|       if (BE (ret != REG_NOERROR, 0))
 | ||
| 	goto free_return;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last);
 | ||
|       ret = sift_states_backward (mctx, &sctx);
 | ||
|       re_node_set_free (&sctx.limits);
 | ||
|       if (BE (ret != REG_NOERROR, 0))
 | ||
| 	goto free_return;
 | ||
|       if (sifted_states[0] == NULL)
 | ||
| 	{
 | ||
| 	  ret = REG_NOMATCH;
 | ||
| 	  goto free_return;
 | ||
| 	}
 | ||
|     }
 | ||
|   re_free (mctx->state_log);
 | ||
|   mctx->state_log = sifted_states;
 | ||
|   sifted_states = NULL;
 | ||
|   mctx->last_node = halt_node;
 | ||
|   mctx->match_last = match_last;
 | ||
|   ret = REG_NOERROR;
 | ||
|  free_return:
 | ||
|   re_free (sifted_states);
 | ||
|   re_free (lim_states);
 | ||
|   return ret;
 | ||
| }
 | ||
| 
 | ||
| /* Acquire an initial state and return it.
 | ||
|    We must select appropriate initial state depending on the context,
 | ||
|    since initial states may have constraints like "\<", "^", etc..  */
 | ||
| 
 | ||
| static inline re_dfastate_t *
 | ||
| __attribute ((always_inline)) internal_function
 | ||
| acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx,
 | ||
| 			    int idx)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   if (dfa->init_state->has_constraint)
 | ||
|     {
 | ||
|       unsigned int context;
 | ||
|       context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags);
 | ||
|       if (IS_WORD_CONTEXT (context))
 | ||
| 	return dfa->init_state_word;
 | ||
|       else if (IS_ORDINARY_CONTEXT (context))
 | ||
| 	return dfa->init_state;
 | ||
|       else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context))
 | ||
| 	return dfa->init_state_begbuf;
 | ||
|       else if (IS_NEWLINE_CONTEXT (context))
 | ||
| 	return dfa->init_state_nl;
 | ||
|       else if (IS_BEGBUF_CONTEXT (context))
 | ||
| 	{
 | ||
| 	  /* It is relatively rare case, then calculate on demand.  */
 | ||
| 	  return re_acquire_state_context (err, dfa,
 | ||
| 					   dfa->init_state->entrance_nodes,
 | ||
| 					   context);
 | ||
| 	}
 | ||
|       else
 | ||
| 	/* Must not happen?  */
 | ||
| 	return dfa->init_state;
 | ||
|     }
 | ||
|   else
 | ||
|     return dfa->init_state;
 | ||
| }
 | ||
| 
 | ||
| /* Check whether the regular expression match input string INPUT or not,
 | ||
|    and return the index where the matching end, return -1 if not match,
 | ||
|    or return -2 in case of an error.
 | ||
|    FL_LONGEST_MATCH means we want the POSIX longest matching.
 | ||
|    If P_MATCH_FIRST is not NULL, and the match fails, it is set to the
 | ||
|    next place where we may want to try matching.
 | ||
|    Note that the matcher assume that the matching starts from the current
 | ||
|    index of the buffer.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| check_matching (re_match_context_t *mctx, int fl_longest_match,
 | ||
| 		int *p_match_first)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   reg_errcode_t err;
 | ||
|   int match = 0;
 | ||
|   int match_last = -1;
 | ||
|   int cur_str_idx = re_string_cur_idx (&mctx->input);
 | ||
|   re_dfastate_t *cur_state;
 | ||
|   int at_init_state = p_match_first != NULL;
 | ||
|   int next_start_idx = cur_str_idx;
 | ||
| 
 | ||
|   err = REG_NOERROR;
 | ||
|   cur_state = acquire_init_state_context (&err, mctx, cur_str_idx);
 | ||
|   /* An initial state must not be NULL (invalid).  */
 | ||
|   if (BE (cur_state == NULL, 0))
 | ||
|     {
 | ||
|       assert (err == REG_ESPACE);
 | ||
|       return -2;
 | ||
|     }
 | ||
| 
 | ||
|   if (mctx->state_log != NULL)
 | ||
|     {
 | ||
|       mctx->state_log[cur_str_idx] = cur_state;
 | ||
| 
 | ||
|       /* Check OP_OPEN_SUBEXP in the initial state in case that we use them
 | ||
| 	 later.  E.g. Processing back references.  */
 | ||
|       if (BE (dfa->nbackref, 0))
 | ||
| 	{
 | ||
| 	  at_init_state = 0;
 | ||
| 	  err = check_subexp_matching_top (mctx, &cur_state->nodes, 0);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    return err;
 | ||
| 
 | ||
| 	  if (cur_state->has_backref)
 | ||
| 	    {
 | ||
| 	      err = transit_state_bkref (mctx, &cur_state->nodes);
 | ||
| 	      if (BE (err != REG_NOERROR, 0))
 | ||
| 		return err;
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   /* If the RE accepts NULL string.  */
 | ||
|   if (BE (cur_state->halt, 0))
 | ||
|     {
 | ||
|       if (!cur_state->has_constraint
 | ||
| 	  || check_halt_state_context (mctx, cur_state, cur_str_idx))
 | ||
| 	{
 | ||
| 	  if (!fl_longest_match)
 | ||
| 	    return cur_str_idx;
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      match_last = cur_str_idx;
 | ||
| 	      match = 1;
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   while (!re_string_eoi (&mctx->input))
 | ||
|     {
 | ||
|       re_dfastate_t *old_state = cur_state;
 | ||
|       int next_char_idx = re_string_cur_idx (&mctx->input) + 1;
 | ||
| 
 | ||
|       if (BE (next_char_idx >= mctx->input.bufs_len, 0)
 | ||
| 	  || (BE (next_char_idx >= mctx->input.valid_len, 0)
 | ||
| 	      && mctx->input.valid_len < mctx->input.len))
 | ||
| 	{
 | ||
| 	  err = extend_buffers (mctx);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    {
 | ||
| 	      assert (err == REG_ESPACE);
 | ||
| 	      return -2;
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       cur_state = transit_state (&err, mctx, cur_state);
 | ||
|       if (mctx->state_log != NULL)
 | ||
| 	cur_state = merge_state_with_log (&err, mctx, cur_state);
 | ||
| 
 | ||
|       if (cur_state == NULL)
 | ||
| 	{
 | ||
| 	  /* Reached the invalid state or an error.  Try to recover a valid
 | ||
| 	     state using the state log, if available and if we have not
 | ||
| 	     already found a valid (even if not the longest) match.  */
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    return -2;
 | ||
| 
 | ||
| 	  if (mctx->state_log == NULL
 | ||
| 	      || (match && !fl_longest_match)
 | ||
| 	      || (cur_state = find_recover_state (&err, mctx)) == NULL)
 | ||
| 	    break;
 | ||
| 	}
 | ||
| 
 | ||
|       if (BE (at_init_state, 0))
 | ||
| 	{
 | ||
| 	  if (old_state == cur_state)
 | ||
| 	    next_start_idx = next_char_idx;
 | ||
| 	  else
 | ||
| 	    at_init_state = 0;
 | ||
| 	}
 | ||
| 
 | ||
|       if (cur_state->halt)
 | ||
| 	{
 | ||
| 	  /* Reached a halt state.
 | ||
| 	     Check the halt state can satisfy the current context.  */
 | ||
| 	  if (!cur_state->has_constraint
 | ||
| 	      || check_halt_state_context (mctx, cur_state,
 | ||
| 					   re_string_cur_idx (&mctx->input)))
 | ||
| 	    {
 | ||
| 	      /* We found an appropriate halt state.  */
 | ||
| 	      match_last = re_string_cur_idx (&mctx->input);
 | ||
| 	      match = 1;
 | ||
| 
 | ||
| 	      /* We found a match, do not modify match_first below.  */
 | ||
| 	      p_match_first = NULL;
 | ||
| 	      if (!fl_longest_match)
 | ||
| 		break;
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   if (p_match_first)
 | ||
|     *p_match_first += next_start_idx;
 | ||
| 
 | ||
|   return match_last;
 | ||
| }
 | ||
| 
 | ||
| /* Check NODE match the current context.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| check_halt_node_context (const re_dfa_t *dfa, int node, unsigned int context)
 | ||
| {
 | ||
|   re_token_type_t type = dfa->nodes[node].type;
 | ||
|   unsigned int constraint = dfa->nodes[node].constraint;
 | ||
|   if (type != END_OF_RE)
 | ||
|     return 0;
 | ||
|   if (!constraint)
 | ||
|     return 1;
 | ||
|   if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context))
 | ||
|     return 0;
 | ||
|   return 1;
 | ||
| }
 | ||
| 
 | ||
| /* Check the halt state STATE match the current context.
 | ||
|    Return 0 if not match, if the node, STATE has, is a halt node and
 | ||
|    match the context, return the node.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| check_halt_state_context (const re_match_context_t *mctx,
 | ||
| 			  const re_dfastate_t *state, int idx)
 | ||
| {
 | ||
|   int i;
 | ||
|   unsigned int context;
 | ||
| #ifdef DEBUG
 | ||
|   assert (state->halt);
 | ||
| #endif
 | ||
|   context = re_string_context_at (&mctx->input, idx, mctx->eflags);
 | ||
|   for (i = 0; i < state->nodes.nelem; ++i)
 | ||
|     if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context))
 | ||
|       return state->nodes.elems[i];
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA
 | ||
|    corresponding to the DFA).
 | ||
|    Return the destination node, and update EPS_VIA_NODES, return -1 in case
 | ||
|    of errors.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| proceed_next_node (const re_match_context_t *mctx, int nregs, regmatch_t *regs,
 | ||
| 		   int *pidx, int node, re_node_set *eps_via_nodes,
 | ||
| 		   struct re_fail_stack_t *fs)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   int i, err;
 | ||
|   if (IS_EPSILON_NODE (dfa->nodes[node].type))
 | ||
|     {
 | ||
|       re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes;
 | ||
|       re_node_set *edests = &dfa->edests[node];
 | ||
|       int dest_node;
 | ||
|       err = re_node_set_insert (eps_via_nodes, node);
 | ||
|       if (BE (err < 0, 0))
 | ||
| 	return -2;
 | ||
|       /* Pick up a valid destination, or return -1 if none is found.  */
 | ||
|       for (dest_node = -1, i = 0; i < edests->nelem; ++i)
 | ||
| 	{
 | ||
| 	  int candidate = edests->elems[i];
 | ||
| 	  if (!re_node_set_contains (cur_nodes, candidate))
 | ||
| 	    continue;
 | ||
| 	  if (dest_node == -1)
 | ||
| 	    dest_node = candidate;
 | ||
| 
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      /* In order to avoid infinite loop like "(a*)*", return the second
 | ||
| 		 epsilon-transition if the first was already considered.  */
 | ||
| 	      if (re_node_set_contains (eps_via_nodes, dest_node))
 | ||
| 		return candidate;
 | ||
| 
 | ||
| 	      /* Otherwise, push the second epsilon-transition on the fail stack.  */
 | ||
| 	      else if (fs != NULL
 | ||
| 		       && push_fail_stack (fs, *pidx, candidate, nregs, regs,
 | ||
| 					   eps_via_nodes))
 | ||
| 		return -2;
 | ||
| 
 | ||
| 	      /* We know we are going to exit.  */
 | ||
| 	      break;
 | ||
| 	    }
 | ||
| 	}
 | ||
|       return dest_node;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       int naccepted = 0;
 | ||
|       re_token_type_t type = dfa->nodes[node].type;
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       if (dfa->nodes[node].accept_mb)
 | ||
| 	naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx);
 | ||
|       else
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
|       if (type == OP_BACK_REF)
 | ||
| 	{
 | ||
| 	  int subexp_idx = dfa->nodes[node].opr.idx + 1;
 | ||
| 	  naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so;
 | ||
| 	  if (fs != NULL)
 | ||
| 	    {
 | ||
| 	      if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1)
 | ||
| 		return -1;
 | ||
| 	      else if (naccepted)
 | ||
| 		{
 | ||
| 		  char *buf = (char *) re_string_get_buffer (&mctx->input);
 | ||
| 		  if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx,
 | ||
| 			      naccepted) != 0)
 | ||
| 		    return -1;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 
 | ||
| 	  if (naccepted == 0)
 | ||
| 	    {
 | ||
| 	      int dest_node;
 | ||
| 	      err = re_node_set_insert (eps_via_nodes, node);
 | ||
| 	      if (BE (err < 0, 0))
 | ||
| 		return -2;
 | ||
| 	      dest_node = dfa->edests[node].elems[0];
 | ||
| 	      if (re_node_set_contains (&mctx->state_log[*pidx]->nodes,
 | ||
| 					dest_node))
 | ||
| 		return dest_node;
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       if (naccepted != 0
 | ||
| 	  || check_node_accept (mctx, dfa->nodes + node, *pidx))
 | ||
| 	{
 | ||
| 	  int dest_node = dfa->nexts[node];
 | ||
| 	  *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted;
 | ||
| 	  if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL
 | ||
| 		     || !re_node_set_contains (&mctx->state_log[*pidx]->nodes,
 | ||
| 					       dest_node)))
 | ||
| 	    return -1;
 | ||
| 	  re_node_set_empty (eps_via_nodes);
 | ||
| 	  return dest_node;
 | ||
| 	}
 | ||
|     }
 | ||
|   return -1;
 | ||
| }
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| push_fail_stack (struct re_fail_stack_t *fs, int str_idx, int dest_node,
 | ||
| 		 int nregs, regmatch_t *regs, re_node_set *eps_via_nodes)
 | ||
| {
 | ||
|   reg_errcode_t err;
 | ||
|   int num = fs->num++;
 | ||
|   if (fs->num == fs->alloc)
 | ||
|     {
 | ||
|       struct re_fail_stack_ent_t *new_array;
 | ||
|       new_array = realloc (fs->stack, (sizeof (struct re_fail_stack_ent_t)
 | ||
| 				       * fs->alloc * 2));
 | ||
|       if (new_array == NULL)
 | ||
| 	return REG_ESPACE;
 | ||
|       fs->alloc *= 2;
 | ||
|       fs->stack = new_array;
 | ||
|     }
 | ||
|   fs->stack[num].idx = str_idx;
 | ||
|   fs->stack[num].node = dest_node;
 | ||
|   fs->stack[num].regs = re_malloc (regmatch_t, nregs);
 | ||
|   if (fs->stack[num].regs == NULL)
 | ||
|     return REG_ESPACE;
 | ||
|   memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs);
 | ||
|   err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes);
 | ||
|   return err;
 | ||
| }
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| pop_fail_stack (struct re_fail_stack_t *fs, int *pidx, int nregs,
 | ||
| 		regmatch_t *regs, re_node_set *eps_via_nodes)
 | ||
| {
 | ||
|   int num = --fs->num;
 | ||
|   assert (num >= 0);
 | ||
|   *pidx = fs->stack[num].idx;
 | ||
|   memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs);
 | ||
|   re_node_set_free (eps_via_nodes);
 | ||
|   re_free (fs->stack[num].regs);
 | ||
|   *eps_via_nodes = fs->stack[num].eps_via_nodes;
 | ||
|   return fs->stack[num].node;
 | ||
| }
 | ||
| 
 | ||
| /* Set the positions where the subexpressions are starts/ends to registers
 | ||
|    PMATCH.
 | ||
|    Note: We assume that pmatch[0] is already set, and
 | ||
|    pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| set_regs (const regex_t *preg, const re_match_context_t *mctx, size_t nmatch,
 | ||
| 	  regmatch_t *pmatch, int fl_backtrack)
 | ||
| {
 | ||
|   const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer;
 | ||
|   int idx, cur_node;
 | ||
|   re_node_set eps_via_nodes;
 | ||
|   struct re_fail_stack_t *fs;
 | ||
|   struct re_fail_stack_t fs_body = { 0, 2, NULL };
 | ||
|   regmatch_t *prev_idx_match;
 | ||
|   int prev_idx_match_malloced = 0;
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
|   assert (nmatch > 1);
 | ||
|   assert (mctx->state_log != NULL);
 | ||
| #endif
 | ||
|   if (fl_backtrack)
 | ||
|     {
 | ||
|       fs = &fs_body;
 | ||
|       fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc);
 | ||
|       if (fs->stack == NULL)
 | ||
| 	return REG_ESPACE;
 | ||
|     }
 | ||
|   else
 | ||
|     fs = NULL;
 | ||
| 
 | ||
|   cur_node = dfa->init_node;
 | ||
|   re_node_set_init_empty (&eps_via_nodes);
 | ||
| 
 | ||
| #ifdef HAVE_ALLOCA
 | ||
|   if (__libc_use_alloca (nmatch * sizeof (regmatch_t)))
 | ||
|     prev_idx_match = (regmatch_t *) alloca (nmatch * sizeof (regmatch_t));
 | ||
|   else
 | ||
| #endif
 | ||
|     {
 | ||
|       prev_idx_match = re_malloc (regmatch_t, nmatch);
 | ||
|       if (prev_idx_match == NULL)
 | ||
| 	{
 | ||
| 	  free_fail_stack_return (fs);
 | ||
| 	  return REG_ESPACE;
 | ||
| 	}
 | ||
|       prev_idx_match_malloced = 1;
 | ||
|     }
 | ||
|   memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch);
 | ||
| 
 | ||
|   for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;)
 | ||
|     {
 | ||
|       update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch);
 | ||
| 
 | ||
|       if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node)
 | ||
| 	{
 | ||
| 	  int reg_idx;
 | ||
| 	  if (fs)
 | ||
| 	    {
 | ||
| 	      for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
 | ||
| 		if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1)
 | ||
| 		  break;
 | ||
| 	      if (reg_idx == nmatch)
 | ||
| 		{
 | ||
| 		  re_node_set_free (&eps_via_nodes);
 | ||
| 		  if (prev_idx_match_malloced)
 | ||
| 		    re_free (prev_idx_match);
 | ||
| 		  return free_fail_stack_return (fs);
 | ||
| 		}
 | ||
| 	      cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch,
 | ||
| 					 &eps_via_nodes);
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      re_node_set_free (&eps_via_nodes);
 | ||
| 	      if (prev_idx_match_malloced)
 | ||
| 		re_free (prev_idx_match);
 | ||
| 	      return REG_NOERROR;
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       /* Proceed to next node.  */
 | ||
|       cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node,
 | ||
| 				    &eps_via_nodes, fs);
 | ||
| 
 | ||
|       if (BE (cur_node < 0, 0))
 | ||
| 	{
 | ||
| 	  if (BE (cur_node == -2, 0))
 | ||
| 	    {
 | ||
| 	      re_node_set_free (&eps_via_nodes);
 | ||
| 	      if (prev_idx_match_malloced)
 | ||
| 		re_free (prev_idx_match);
 | ||
| 	      free_fail_stack_return (fs);
 | ||
| 	      return REG_ESPACE;
 | ||
| 	    }
 | ||
| 	  if (fs)
 | ||
| 	    cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch,
 | ||
| 				       &eps_via_nodes);
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      re_node_set_free (&eps_via_nodes);
 | ||
| 	      if (prev_idx_match_malloced)
 | ||
| 		re_free (prev_idx_match);
 | ||
| 	      return REG_NOMATCH;
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
|   re_node_set_free (&eps_via_nodes);
 | ||
|   if (prev_idx_match_malloced)
 | ||
|     re_free (prev_idx_match);
 | ||
|   return free_fail_stack_return (fs);
 | ||
| }
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| free_fail_stack_return (struct re_fail_stack_t *fs)
 | ||
| {
 | ||
|   if (fs)
 | ||
|     {
 | ||
|       int fs_idx;
 | ||
|       for (fs_idx = 0; fs_idx < fs->num; ++fs_idx)
 | ||
| 	{
 | ||
| 	  re_node_set_free (&fs->stack[fs_idx].eps_via_nodes);
 | ||
| 	  re_free (fs->stack[fs_idx].regs);
 | ||
| 	}
 | ||
|       re_free (fs->stack);
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| internal_function
 | ||
| update_regs (const re_dfa_t *dfa, regmatch_t *pmatch,
 | ||
| 	     regmatch_t *prev_idx_match, int cur_node, int cur_idx, int nmatch)
 | ||
| {
 | ||
|   int type = dfa->nodes[cur_node].type;
 | ||
|   if (type == OP_OPEN_SUBEXP)
 | ||
|     {
 | ||
|       int reg_num = dfa->nodes[cur_node].opr.idx + 1;
 | ||
| 
 | ||
|       /* We are at the first node of this sub expression.  */
 | ||
|       if (reg_num < nmatch)
 | ||
| 	{
 | ||
| 	  pmatch[reg_num].rm_so = cur_idx;
 | ||
| 	  pmatch[reg_num].rm_eo = -1;
 | ||
| 	}
 | ||
|     }
 | ||
|   else if (type == OP_CLOSE_SUBEXP)
 | ||
|     {
 | ||
|       int reg_num = dfa->nodes[cur_node].opr.idx + 1;
 | ||
|       if (reg_num < nmatch)
 | ||
| 	{
 | ||
| 	  /* We are at the last node of this sub expression.  */
 | ||
| 	  if (pmatch[reg_num].rm_so < cur_idx)
 | ||
| 	    {
 | ||
| 	      pmatch[reg_num].rm_eo = cur_idx;
 | ||
| 	      /* This is a non-empty match or we are not inside an optional
 | ||
| 		 subexpression.  Accept this right away.  */
 | ||
| 	      memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch);
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      if (dfa->nodes[cur_node].opt_subexp
 | ||
| 		  && prev_idx_match[reg_num].rm_so != -1)
 | ||
| 		/* We transited through an empty match for an optional
 | ||
| 		   subexpression, like (a?)*, and this is not the subexp's
 | ||
| 		   first match.  Copy back the old content of the registers
 | ||
| 		   so that matches of an inner subexpression are undone as
 | ||
| 		   well, like in ((a?))*.  */
 | ||
| 		memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch);
 | ||
| 	      else
 | ||
| 		/* We completed a subexpression, but it may be part of
 | ||
| 		   an optional one, so do not update PREV_IDX_MATCH.  */
 | ||
| 		pmatch[reg_num].rm_eo = cur_idx;
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0
 | ||
|    and sift the nodes in each states according to the following rules.
 | ||
|    Updated state_log will be wrote to STATE_LOG.
 | ||
| 
 | ||
|    Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if...
 | ||
|      1. When STR_IDX == MATCH_LAST(the last index in the state_log):
 | ||
| 	If `a' isn't the LAST_NODE and `a' can't epsilon transit to
 | ||
| 	the LAST_NODE, we throw away the node `a'.
 | ||
|      2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts
 | ||
| 	string `s' and transit to `b':
 | ||
| 	i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw
 | ||
| 	   away the node `a'.
 | ||
| 	ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is
 | ||
| 	    thrown away, we throw away the node `a'.
 | ||
|      3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b':
 | ||
| 	i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the
 | ||
| 	   node `a'.
 | ||
| 	ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away,
 | ||
| 	    we throw away the node `a'.  */
 | ||
| 
 | ||
| #define STATE_NODE_CONTAINS(state,node) \
 | ||
|   ((state) != NULL && re_node_set_contains (&(state)->nodes, node))
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| sift_states_backward (const re_match_context_t *mctx, re_sift_context_t *sctx)
 | ||
| {
 | ||
|   reg_errcode_t err;
 | ||
|   int null_cnt = 0;
 | ||
|   int str_idx = sctx->last_str_idx;
 | ||
|   re_node_set cur_dest;
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
|   assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL);
 | ||
| #endif
 | ||
| 
 | ||
|   /* Build sifted state_log[str_idx].  It has the nodes which can epsilon
 | ||
|      transit to the last_node and the last_node itself.  */
 | ||
|   err = re_node_set_init_1 (&cur_dest, sctx->last_node);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     return err;
 | ||
|   err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     goto free_return;
 | ||
| 
 | ||
|   /* Then check each states in the state_log.  */
 | ||
|   while (str_idx > 0)
 | ||
|     {
 | ||
|       /* Update counters.  */
 | ||
|       null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0;
 | ||
|       if (null_cnt > mctx->max_mb_elem_len)
 | ||
| 	{
 | ||
| 	  memset (sctx->sifted_states, '\0',
 | ||
| 		  sizeof (re_dfastate_t *) * str_idx);
 | ||
| 	  re_node_set_free (&cur_dest);
 | ||
| 	  return REG_NOERROR;
 | ||
| 	}
 | ||
|       re_node_set_empty (&cur_dest);
 | ||
|       --str_idx;
 | ||
| 
 | ||
|       if (mctx->state_log[str_idx])
 | ||
| 	{
 | ||
| 	  err = build_sifted_states (mctx, sctx, str_idx, &cur_dest);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    goto free_return;
 | ||
| 	}
 | ||
| 
 | ||
|       /* Add all the nodes which satisfy the following conditions:
 | ||
| 	 - It can epsilon transit to a node in CUR_DEST.
 | ||
| 	 - It is in CUR_SRC.
 | ||
| 	 And update state_log.  */
 | ||
|       err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest);
 | ||
|       if (BE (err != REG_NOERROR, 0))
 | ||
| 	goto free_return;
 | ||
|     }
 | ||
|   err = REG_NOERROR;
 | ||
|  free_return:
 | ||
|   re_node_set_free (&cur_dest);
 | ||
|   return err;
 | ||
| }
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| build_sifted_states (const re_match_context_t *mctx, re_sift_context_t *sctx,
 | ||
| 		     int str_idx, re_node_set *cur_dest)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   const re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes;
 | ||
|   int i;
 | ||
| 
 | ||
|   /* Then build the next sifted state.
 | ||
|      We build the next sifted state on `cur_dest', and update
 | ||
|      `sifted_states[str_idx]' with `cur_dest'.
 | ||
|      Note:
 | ||
|      `cur_dest' is the sifted state from `state_log[str_idx + 1]'.
 | ||
|      `cur_src' points the node_set of the old `state_log[str_idx]'
 | ||
|      (with the epsilon nodes pre-filtered out).  */
 | ||
|   for (i = 0; i < cur_src->nelem; i++)
 | ||
|     {
 | ||
|       int prev_node = cur_src->elems[i];
 | ||
|       int naccepted = 0;
 | ||
|       int ret;
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
|       re_token_type_t type = dfa->nodes[prev_node].type;
 | ||
|       assert (!IS_EPSILON_NODE (type));
 | ||
| #endif
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       /* If the node may accept `multi byte'.  */
 | ||
|       if (dfa->nodes[prev_node].accept_mb)
 | ||
| 	naccepted = sift_states_iter_mb (mctx, sctx, prev_node,
 | ||
| 					 str_idx, sctx->last_str_idx);
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 
 | ||
|       /* We don't check backreferences here.
 | ||
| 	 See update_cur_sifted_state().  */
 | ||
|       if (!naccepted
 | ||
| 	  && check_node_accept (mctx, dfa->nodes + prev_node, str_idx)
 | ||
| 	  && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1],
 | ||
| 				  dfa->nexts[prev_node]))
 | ||
| 	naccepted = 1;
 | ||
| 
 | ||
|       if (naccepted == 0)
 | ||
| 	continue;
 | ||
| 
 | ||
|       if (sctx->limits.nelem)
 | ||
| 	{
 | ||
| 	  int to_idx = str_idx + naccepted;
 | ||
| 	  if (check_dst_limits (mctx, &sctx->limits,
 | ||
| 				dfa->nexts[prev_node], to_idx,
 | ||
| 				prev_node, str_idx))
 | ||
| 	    continue;
 | ||
| 	}
 | ||
|       ret = re_node_set_insert (cur_dest, prev_node);
 | ||
|       if (BE (ret == -1, 0))
 | ||
| 	return REG_ESPACE;
 | ||
|     }
 | ||
| 
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Helper functions.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| clean_state_log_if_needed (re_match_context_t *mctx, int next_state_log_idx)
 | ||
| {
 | ||
|   int top = mctx->state_log_top;
 | ||
| 
 | ||
|   if (next_state_log_idx >= mctx->input.bufs_len
 | ||
|       || (next_state_log_idx >= mctx->input.valid_len
 | ||
| 	  && mctx->input.valid_len < mctx->input.len))
 | ||
|     {
 | ||
|       reg_errcode_t err;
 | ||
|       err = extend_buffers (mctx);
 | ||
|       if (BE (err != REG_NOERROR, 0))
 | ||
| 	return err;
 | ||
|     }
 | ||
| 
 | ||
|   if (top < next_state_log_idx)
 | ||
|     {
 | ||
|       memset (mctx->state_log + top + 1, '\0',
 | ||
| 	      sizeof (re_dfastate_t *) * (next_state_log_idx - top));
 | ||
|       mctx->state_log_top = next_state_log_idx;
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| merge_state_array (const re_dfa_t *dfa, re_dfastate_t **dst,
 | ||
| 		   re_dfastate_t **src, int num)
 | ||
| {
 | ||
|   int st_idx;
 | ||
|   reg_errcode_t err;
 | ||
|   for (st_idx = 0; st_idx < num; ++st_idx)
 | ||
|     {
 | ||
|       if (dst[st_idx] == NULL)
 | ||
| 	dst[st_idx] = src[st_idx];
 | ||
|       else if (src[st_idx] != NULL)
 | ||
| 	{
 | ||
| 	  re_node_set merged_set;
 | ||
| 	  err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes,
 | ||
| 					&src[st_idx]->nodes);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    return err;
 | ||
| 	  dst[st_idx] = re_acquire_state (&err, dfa, &merged_set);
 | ||
| 	  re_node_set_free (&merged_set);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    return err;
 | ||
| 	}
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| update_cur_sifted_state (const re_match_context_t *mctx,
 | ||
| 			 re_sift_context_t *sctx, int str_idx,
 | ||
| 			 re_node_set *dest_nodes)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   reg_errcode_t err = REG_NOERROR;
 | ||
|   const re_node_set *candidates;
 | ||
|   candidates = ((mctx->state_log[str_idx] == NULL) ? NULL
 | ||
| 		: &mctx->state_log[str_idx]->nodes);
 | ||
| 
 | ||
|   if (dest_nodes->nelem == 0)
 | ||
|     sctx->sifted_states[str_idx] = NULL;
 | ||
|   else
 | ||
|     {
 | ||
|       if (candidates)
 | ||
| 	{
 | ||
| 	  /* At first, add the nodes which can epsilon transit to a node in
 | ||
| 	     DEST_NODE.  */
 | ||
| 	  err = add_epsilon_src_nodes (dfa, dest_nodes, candidates);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    return err;
 | ||
| 
 | ||
| 	  /* Then, check the limitations in the current sift_context.  */
 | ||
| 	  if (sctx->limits.nelem)
 | ||
| 	    {
 | ||
| 	      err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits,
 | ||
| 					 mctx->bkref_ents, str_idx);
 | ||
| 	      if (BE (err != REG_NOERROR, 0))
 | ||
| 		return err;
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes);
 | ||
|       if (BE (err != REG_NOERROR, 0))
 | ||
| 	return err;
 | ||
|     }
 | ||
| 
 | ||
|   if (candidates && mctx->state_log[str_idx]->has_backref)
 | ||
|     {
 | ||
|       err = sift_states_bkref (mctx, sctx, str_idx, candidates);
 | ||
|       if (BE (err != REG_NOERROR, 0))
 | ||
| 	return err;
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| add_epsilon_src_nodes (const re_dfa_t *dfa, re_node_set *dest_nodes,
 | ||
| 		       const re_node_set *candidates)
 | ||
| {
 | ||
|   reg_errcode_t err = REG_NOERROR;
 | ||
|   int i;
 | ||
| 
 | ||
|   re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     return err;
 | ||
| 
 | ||
|   if (!state->inveclosure.alloc)
 | ||
|     {
 | ||
|       err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem);
 | ||
|       if (BE (err != REG_NOERROR, 0))
 | ||
| 	return REG_ESPACE;
 | ||
|       for (i = 0; i < dest_nodes->nelem; i++)
 | ||
| 	{
 | ||
| 	  err = re_node_set_merge (&state->inveclosure,
 | ||
| 				   dfa->inveclosures + dest_nodes->elems[i]);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    return REG_ESPACE;
 | ||
| 	}
 | ||
|     }
 | ||
|   return re_node_set_add_intersect (dest_nodes, candidates,
 | ||
| 				    &state->inveclosure);
 | ||
| }
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| sub_epsilon_src_nodes (const re_dfa_t *dfa, int node, re_node_set *dest_nodes,
 | ||
| 		       const re_node_set *candidates)
 | ||
| {
 | ||
|     int ecl_idx;
 | ||
|     reg_errcode_t err;
 | ||
|     re_node_set *inv_eclosure = dfa->inveclosures + node;
 | ||
|     re_node_set except_nodes;
 | ||
|     re_node_set_init_empty (&except_nodes);
 | ||
|     for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx)
 | ||
|       {
 | ||
| 	int cur_node = inv_eclosure->elems[ecl_idx];
 | ||
| 	if (cur_node == node)
 | ||
| 	  continue;
 | ||
| 	if (IS_EPSILON_NODE (dfa->nodes[cur_node].type))
 | ||
| 	  {
 | ||
| 	    int edst1 = dfa->edests[cur_node].elems[0];
 | ||
| 	    int edst2 = ((dfa->edests[cur_node].nelem > 1)
 | ||
| 			 ? dfa->edests[cur_node].elems[1] : -1);
 | ||
| 	    if ((!re_node_set_contains (inv_eclosure, edst1)
 | ||
| 		 && re_node_set_contains (dest_nodes, edst1))
 | ||
| 		|| (edst2 > 0
 | ||
| 		    && !re_node_set_contains (inv_eclosure, edst2)
 | ||
| 		    && re_node_set_contains (dest_nodes, edst2)))
 | ||
| 	      {
 | ||
| 		err = re_node_set_add_intersect (&except_nodes, candidates,
 | ||
| 						 dfa->inveclosures + cur_node);
 | ||
| 		if (BE (err != REG_NOERROR, 0))
 | ||
| 		  {
 | ||
| 		    re_node_set_free (&except_nodes);
 | ||
| 		    return err;
 | ||
| 		  }
 | ||
| 	      }
 | ||
| 	  }
 | ||
|       }
 | ||
|     for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx)
 | ||
|       {
 | ||
| 	int cur_node = inv_eclosure->elems[ecl_idx];
 | ||
| 	if (!re_node_set_contains (&except_nodes, cur_node))
 | ||
| 	  {
 | ||
| 	    int idx = re_node_set_contains (dest_nodes, cur_node) - 1;
 | ||
| 	    re_node_set_remove_at (dest_nodes, idx);
 | ||
| 	  }
 | ||
|       }
 | ||
|     re_node_set_free (&except_nodes);
 | ||
|     return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| check_dst_limits (const re_match_context_t *mctx, re_node_set *limits,
 | ||
| 		  int dst_node, int dst_idx, int src_node, int src_idx)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   int lim_idx, src_pos, dst_pos;
 | ||
| 
 | ||
|   int dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx);
 | ||
|   int src_bkref_idx = search_cur_bkref_entry (mctx, src_idx);
 | ||
|   for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx)
 | ||
|     {
 | ||
|       int subexp_idx;
 | ||
|       struct re_backref_cache_entry *ent;
 | ||
|       ent = mctx->bkref_ents + limits->elems[lim_idx];
 | ||
|       subexp_idx = dfa->nodes[ent->node].opr.idx;
 | ||
| 
 | ||
|       dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx],
 | ||
| 					   subexp_idx, dst_node, dst_idx,
 | ||
| 					   dst_bkref_idx);
 | ||
|       src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx],
 | ||
| 					   subexp_idx, src_node, src_idx,
 | ||
| 					   src_bkref_idx);
 | ||
| 
 | ||
|       /* In case of:
 | ||
| 	 <src> <dst> ( <subexp> )
 | ||
| 	 ( <subexp> ) <src> <dst>
 | ||
| 	 ( <subexp1> <src> <subexp2> <dst> <subexp3> )  */
 | ||
|       if (src_pos == dst_pos)
 | ||
| 	continue; /* This is unrelated limitation.  */
 | ||
|       else
 | ||
| 	return 1;
 | ||
|     }
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries,
 | ||
| 			     int subexp_idx, int from_node, int bkref_idx)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   const re_node_set *eclosures = dfa->eclosures + from_node;
 | ||
|   int node_idx;
 | ||
| 
 | ||
|   /* Else, we are on the boundary: examine the nodes on the epsilon
 | ||
|      closure.  */
 | ||
|   for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx)
 | ||
|     {
 | ||
|       int node = eclosures->elems[node_idx];
 | ||
|       switch (dfa->nodes[node].type)
 | ||
| 	{
 | ||
| 	case OP_BACK_REF:
 | ||
| 	  if (bkref_idx != -1)
 | ||
| 	    {
 | ||
| 	      struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx;
 | ||
| 	      do
 | ||
| 		{
 | ||
| 		  int dst, cpos;
 | ||
| 
 | ||
| 		  if (ent->node != node)
 | ||
| 		    continue;
 | ||
| 
 | ||
| 		  if (subexp_idx < BITSET_WORD_BITS
 | ||
| 		      && !(ent->eps_reachable_subexps_map
 | ||
| 			   & ((bitset_word_t) 1 << subexp_idx)))
 | ||
| 		    continue;
 | ||
| 
 | ||
| 		  /* Recurse trying to reach the OP_OPEN_SUBEXP and
 | ||
| 		     OP_CLOSE_SUBEXP cases below.  But, if the
 | ||
| 		     destination node is the same node as the source
 | ||
| 		     node, don't recurse because it would cause an
 | ||
| 		     infinite loop: a regex that exhibits this behavior
 | ||
| 		     is ()\1*\1*  */
 | ||
| 		  dst = dfa->edests[node].elems[0];
 | ||
| 		  if (dst == from_node)
 | ||
| 		    {
 | ||
| 		      if (boundaries & 1)
 | ||
| 			return -1;
 | ||
| 		      else /* if (boundaries & 2) */
 | ||
| 			return 0;
 | ||
| 		    }
 | ||
| 
 | ||
| 		  cpos =
 | ||
| 		    check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx,
 | ||
| 						 dst, bkref_idx);
 | ||
| 		  if (cpos == -1 /* && (boundaries & 1) */)
 | ||
| 		    return -1;
 | ||
| 		  if (cpos == 0 && (boundaries & 2))
 | ||
| 		    return 0;
 | ||
| 
 | ||
| 		  if (subexp_idx < BITSET_WORD_BITS)
 | ||
| 		    ent->eps_reachable_subexps_map
 | ||
| 		      &= ~((bitset_word_t) 1 << subexp_idx);
 | ||
| 		}
 | ||
| 	      while (ent++->more);
 | ||
| 	    }
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case OP_OPEN_SUBEXP:
 | ||
| 	  if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx)
 | ||
| 	    return -1;
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case OP_CLOSE_SUBEXP:
 | ||
| 	  if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx)
 | ||
| 	    return 0;
 | ||
| 	  break;
 | ||
| 
 | ||
| 	default:
 | ||
| 	    break;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   return (boundaries & 2) ? 1 : 0;
 | ||
| }
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| check_dst_limits_calc_pos (const re_match_context_t *mctx, int limit,
 | ||
| 			   int subexp_idx, int from_node, int str_idx,
 | ||
| 			   int bkref_idx)
 | ||
| {
 | ||
|   struct re_backref_cache_entry *lim = mctx->bkref_ents + limit;
 | ||
|   int boundaries;
 | ||
| 
 | ||
|   /* If we are outside the range of the subexpression, return -1 or 1.  */
 | ||
|   if (str_idx < lim->subexp_from)
 | ||
|     return -1;
 | ||
| 
 | ||
|   if (lim->subexp_to < str_idx)
 | ||
|     return 1;
 | ||
| 
 | ||
|   /* If we are within the subexpression, return 0.  */
 | ||
|   boundaries = (str_idx == lim->subexp_from);
 | ||
|   boundaries |= (str_idx == lim->subexp_to) << 1;
 | ||
|   if (boundaries == 0)
 | ||
|     return 0;
 | ||
| 
 | ||
|   /* Else, examine epsilon closure.  */
 | ||
|   return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx,
 | ||
| 				      from_node, bkref_idx);
 | ||
| }
 | ||
| 
 | ||
| /* Check the limitations of sub expressions LIMITS, and remove the nodes
 | ||
|    which are against limitations from DEST_NODES. */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| check_subexp_limits (const re_dfa_t *dfa, re_node_set *dest_nodes,
 | ||
| 		     const re_node_set *candidates, re_node_set *limits,
 | ||
| 		     struct re_backref_cache_entry *bkref_ents, int str_idx)
 | ||
| {
 | ||
|   reg_errcode_t err;
 | ||
|   int node_idx, lim_idx;
 | ||
| 
 | ||
|   for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx)
 | ||
|     {
 | ||
|       int subexp_idx;
 | ||
|       struct re_backref_cache_entry *ent;
 | ||
|       ent = bkref_ents + limits->elems[lim_idx];
 | ||
| 
 | ||
|       if (str_idx <= ent->subexp_from || ent->str_idx < str_idx)
 | ||
| 	continue; /* This is unrelated limitation.  */
 | ||
| 
 | ||
|       subexp_idx = dfa->nodes[ent->node].opr.idx;
 | ||
|       if (ent->subexp_to == str_idx)
 | ||
| 	{
 | ||
| 	  int ops_node = -1;
 | ||
| 	  int cls_node = -1;
 | ||
| 	  for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
 | ||
| 	    {
 | ||
| 	      int node = dest_nodes->elems[node_idx];
 | ||
| 	      re_token_type_t type = dfa->nodes[node].type;
 | ||
| 	      if (type == OP_OPEN_SUBEXP
 | ||
| 		  && subexp_idx == dfa->nodes[node].opr.idx)
 | ||
| 		ops_node = node;
 | ||
| 	      else if (type == OP_CLOSE_SUBEXP
 | ||
| 		       && subexp_idx == dfa->nodes[node].opr.idx)
 | ||
| 		cls_node = node;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  /* Check the limitation of the open subexpression.  */
 | ||
| 	  /* Note that (ent->subexp_to = str_idx != ent->subexp_from).  */
 | ||
| 	  if (ops_node >= 0)
 | ||
| 	    {
 | ||
| 	      err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes,
 | ||
| 					   candidates);
 | ||
| 	      if (BE (err != REG_NOERROR, 0))
 | ||
| 		return err;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  /* Check the limitation of the close subexpression.  */
 | ||
| 	  if (cls_node >= 0)
 | ||
| 	    for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
 | ||
| 	      {
 | ||
| 		int node = dest_nodes->elems[node_idx];
 | ||
| 		if (!re_node_set_contains (dfa->inveclosures + node,
 | ||
| 					   cls_node)
 | ||
| 		    && !re_node_set_contains (dfa->eclosures + node,
 | ||
| 					      cls_node))
 | ||
| 		  {
 | ||
| 		    /* It is against this limitation.
 | ||
| 		       Remove it form the current sifted state.  */
 | ||
| 		    err = sub_epsilon_src_nodes (dfa, node, dest_nodes,
 | ||
| 						 candidates);
 | ||
| 		    if (BE (err != REG_NOERROR, 0))
 | ||
| 		      return err;
 | ||
| 		    --node_idx;
 | ||
| 		  }
 | ||
| 	      }
 | ||
| 	}
 | ||
|       else /* (ent->subexp_to != str_idx)  */
 | ||
| 	{
 | ||
| 	  for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
 | ||
| 	    {
 | ||
| 	      int node = dest_nodes->elems[node_idx];
 | ||
| 	      re_token_type_t type = dfa->nodes[node].type;
 | ||
| 	      if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP)
 | ||
| 		{
 | ||
| 		  if (subexp_idx != dfa->nodes[node].opr.idx)
 | ||
| 		    continue;
 | ||
| 		  /* It is against this limitation.
 | ||
| 		     Remove it form the current sifted state.  */
 | ||
| 		  err = sub_epsilon_src_nodes (dfa, node, dest_nodes,
 | ||
| 					       candidates);
 | ||
| 		  if (BE (err != REG_NOERROR, 0))
 | ||
| 		    return err;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| sift_states_bkref (const re_match_context_t *mctx, re_sift_context_t *sctx,
 | ||
| 		   int str_idx, const re_node_set *candidates)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   reg_errcode_t err;
 | ||
|   int node_idx, node;
 | ||
|   re_sift_context_t local_sctx;
 | ||
|   int first_idx = search_cur_bkref_entry (mctx, str_idx);
 | ||
| 
 | ||
|   if (first_idx == -1)
 | ||
|     return REG_NOERROR;
 | ||
| 
 | ||
|   local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized.  */
 | ||
| 
 | ||
|   for (node_idx = 0; node_idx < candidates->nelem; ++node_idx)
 | ||
|     {
 | ||
|       int enabled_idx;
 | ||
|       re_token_type_t type;
 | ||
|       struct re_backref_cache_entry *entry;
 | ||
|       node = candidates->elems[node_idx];
 | ||
|       type = dfa->nodes[node].type;
 | ||
|       /* Avoid infinite loop for the REs like "()\1+".  */
 | ||
|       if (node == sctx->last_node && str_idx == sctx->last_str_idx)
 | ||
| 	continue;
 | ||
|       if (type != OP_BACK_REF)
 | ||
| 	continue;
 | ||
| 
 | ||
|       entry = mctx->bkref_ents + first_idx;
 | ||
|       enabled_idx = first_idx;
 | ||
|       do
 | ||
| 	{
 | ||
| 	  int subexp_len;
 | ||
| 	  int to_idx;
 | ||
| 	  int dst_node;
 | ||
| 	  int ret;
 | ||
| 	  re_dfastate_t *cur_state;
 | ||
| 
 | ||
| 	  if (entry->node != node)
 | ||
| 	    continue;
 | ||
| 	  subexp_len = entry->subexp_to - entry->subexp_from;
 | ||
| 	  to_idx = str_idx + subexp_len;
 | ||
| 	  dst_node = (subexp_len ? dfa->nexts[node]
 | ||
| 		      : dfa->edests[node].elems[0]);
 | ||
| 
 | ||
| 	  if (to_idx > sctx->last_str_idx
 | ||
| 	      || sctx->sifted_states[to_idx] == NULL
 | ||
| 	      || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node)
 | ||
| 	      || check_dst_limits (mctx, &sctx->limits, node,
 | ||
| 				   str_idx, dst_node, to_idx))
 | ||
| 	    continue;
 | ||
| 
 | ||
| 	  if (local_sctx.sifted_states == NULL)
 | ||
| 	    {
 | ||
| 	      local_sctx = *sctx;
 | ||
| 	      err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits);
 | ||
| 	      if (BE (err != REG_NOERROR, 0))
 | ||
| 		goto free_return;
 | ||
| 	    }
 | ||
| 	  local_sctx.last_node = node;
 | ||
| 	  local_sctx.last_str_idx = str_idx;
 | ||
| 	  ret = re_node_set_insert (&local_sctx.limits, enabled_idx);
 | ||
| 	  if (BE (ret < 0, 0))
 | ||
| 	    {
 | ||
| 	      err = REG_ESPACE;
 | ||
| 	      goto free_return;
 | ||
| 	    }
 | ||
| 	  cur_state = local_sctx.sifted_states[str_idx];
 | ||
| 	  err = sift_states_backward (mctx, &local_sctx);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    goto free_return;
 | ||
| 	  if (sctx->limited_states != NULL)
 | ||
| 	    {
 | ||
| 	      err = merge_state_array (dfa, sctx->limited_states,
 | ||
| 				       local_sctx.sifted_states,
 | ||
| 				       str_idx + 1);
 | ||
| 	      if (BE (err != REG_NOERROR, 0))
 | ||
| 		goto free_return;
 | ||
| 	    }
 | ||
| 	  local_sctx.sifted_states[str_idx] = cur_state;
 | ||
| 	  re_node_set_remove (&local_sctx.limits, enabled_idx);
 | ||
| 
 | ||
| 	  /* mctx->bkref_ents may have changed, reload the pointer.  */
 | ||
| 	  entry = mctx->bkref_ents + enabled_idx;
 | ||
| 	}
 | ||
|       while (enabled_idx++, entry++->more);
 | ||
|     }
 | ||
|   err = REG_NOERROR;
 | ||
|  free_return:
 | ||
|   if (local_sctx.sifted_states != NULL)
 | ||
|     {
 | ||
|       re_node_set_free (&local_sctx.limits);
 | ||
|     }
 | ||
| 
 | ||
|   return err;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| static int
 | ||
| internal_function
 | ||
| sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx,
 | ||
| 		     int node_idx, int str_idx, int max_str_idx)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   int naccepted;
 | ||
|   /* Check the node can accept `multi byte'.  */
 | ||
|   naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx);
 | ||
|   if (naccepted > 0 && str_idx + naccepted <= max_str_idx &&
 | ||
|       !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted],
 | ||
| 			    dfa->nexts[node_idx]))
 | ||
|     /* The node can't accept the `multi byte', or the
 | ||
|        destination was already thrown away, then the node
 | ||
|        couldn't accept the current input `multi byte'.   */
 | ||
|     naccepted = 0;
 | ||
|   /* Otherwise, it is sure that the node could accept
 | ||
|      `naccepted' bytes input.  */
 | ||
|   return naccepted;
 | ||
| }
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 
 | ||
| 
 | ||
| /* Functions for state transition.  */
 | ||
| 
 | ||
| /* Return the next state to which the current state STATE will transit by
 | ||
|    accepting the current input byte, and update STATE_LOG if necessary.
 | ||
|    If STATE can accept a multibyte char/collating element/back reference
 | ||
|    update the destination of STATE_LOG.  */
 | ||
| 
 | ||
| static re_dfastate_t *
 | ||
| internal_function
 | ||
| transit_state (reg_errcode_t *err, re_match_context_t *mctx,
 | ||
| 	       re_dfastate_t *state)
 | ||
| {
 | ||
|   re_dfastate_t **trtable;
 | ||
|   unsigned char ch;
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   /* If the current state can accept multibyte.  */
 | ||
|   if (BE (state->accept_mb, 0))
 | ||
|     {
 | ||
|       *err = transit_state_mb (mctx, state);
 | ||
|       if (BE (*err != REG_NOERROR, 0))
 | ||
| 	return NULL;
 | ||
|     }
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 
 | ||
|   /* Then decide the next state with the single byte.  */
 | ||
| #if 0
 | ||
|   if (0)
 | ||
|     /* don't use transition table  */
 | ||
|     return transit_state_sb (err, mctx, state);
 | ||
| #endif
 | ||
| 
 | ||
|   /* Use transition table  */
 | ||
|   ch = re_string_fetch_byte (&mctx->input);
 | ||
|   for (;;)
 | ||
|     {
 | ||
|       trtable = state->trtable;
 | ||
|       if (BE (trtable != NULL, 1))
 | ||
| 	return trtable[ch];
 | ||
| 
 | ||
|       trtable = state->word_trtable;
 | ||
|       if (BE (trtable != NULL, 1))
 | ||
| 	{
 | ||
| 	  unsigned int context;
 | ||
| 	  context
 | ||
| 	    = re_string_context_at (&mctx->input,
 | ||
| 				    re_string_cur_idx (&mctx->input) - 1,
 | ||
| 				    mctx->eflags);
 | ||
| 	  if (IS_WORD_CONTEXT (context))
 | ||
| 	    return trtable[ch + SBC_MAX];
 | ||
| 	  else
 | ||
| 	    return trtable[ch];
 | ||
| 	}
 | ||
| 
 | ||
|       if (!build_trtable (mctx->dfa, state))
 | ||
| 	{
 | ||
| 	  *err = REG_ESPACE;
 | ||
| 	  return NULL;
 | ||
| 	}
 | ||
| 
 | ||
|       /* Retry, we now have a transition table.  */
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Update the state_log if we need */
 | ||
| static re_dfastate_t *
 | ||
| internal_function
 | ||
| merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx,
 | ||
| 		      re_dfastate_t *next_state)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   int cur_idx = re_string_cur_idx (&mctx->input);
 | ||
| 
 | ||
|   if (cur_idx > mctx->state_log_top)
 | ||
|     {
 | ||
|       mctx->state_log[cur_idx] = next_state;
 | ||
|       mctx->state_log_top = cur_idx;
 | ||
|     }
 | ||
|   else if (mctx->state_log[cur_idx] == NULL)
 | ||
|     {
 | ||
|       mctx->state_log[cur_idx] = next_state;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       re_dfastate_t *pstate;
 | ||
|       unsigned int context;
 | ||
|       re_node_set next_nodes, *log_nodes, *table_nodes = NULL;
 | ||
|       /* If (state_log[cur_idx] != 0), it implies that cur_idx is
 | ||
| 	 the destination of a multibyte char/collating element/
 | ||
| 	 back reference.  Then the next state is the union set of
 | ||
| 	 these destinations and the results of the transition table.  */
 | ||
|       pstate = mctx->state_log[cur_idx];
 | ||
|       log_nodes = pstate->entrance_nodes;
 | ||
|       if (next_state != NULL)
 | ||
| 	{
 | ||
| 	  table_nodes = next_state->entrance_nodes;
 | ||
| 	  *err = re_node_set_init_union (&next_nodes, table_nodes,
 | ||
| 					     log_nodes);
 | ||
| 	  if (BE (*err != REG_NOERROR, 0))
 | ||
| 	    return NULL;
 | ||
| 	}
 | ||
|       else
 | ||
| 	next_nodes = *log_nodes;
 | ||
|       /* Note: We already add the nodes of the initial state,
 | ||
| 	 then we don't need to add them here.  */
 | ||
| 
 | ||
|       context = re_string_context_at (&mctx->input,
 | ||
| 				      re_string_cur_idx (&mctx->input) - 1,
 | ||
| 				      mctx->eflags);
 | ||
|       next_state = mctx->state_log[cur_idx]
 | ||
| 	= re_acquire_state_context (err, dfa, &next_nodes, context);
 | ||
|       /* We don't need to check errors here, since the return value of
 | ||
| 	 this function is next_state and ERR is already set.  */
 | ||
| 
 | ||
|       if (table_nodes != NULL)
 | ||
| 	re_node_set_free (&next_nodes);
 | ||
|     }
 | ||
| 
 | ||
|   if (BE (dfa->nbackref, 0) && next_state != NULL)
 | ||
|     {
 | ||
|       /* Check OP_OPEN_SUBEXP in the current state in case that we use them
 | ||
| 	 later.  We must check them here, since the back references in the
 | ||
| 	 next state might use them.  */
 | ||
|       *err = check_subexp_matching_top (mctx, &next_state->nodes,
 | ||
| 					cur_idx);
 | ||
|       if (BE (*err != REG_NOERROR, 0))
 | ||
| 	return NULL;
 | ||
| 
 | ||
|       /* If the next state has back references.  */
 | ||
|       if (next_state->has_backref)
 | ||
| 	{
 | ||
| 	  *err = transit_state_bkref (mctx, &next_state->nodes);
 | ||
| 	  if (BE (*err != REG_NOERROR, 0))
 | ||
| 	    return NULL;
 | ||
| 	  next_state = mctx->state_log[cur_idx];
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   return next_state;
 | ||
| }
 | ||
| 
 | ||
| /* Skip bytes in the input that correspond to part of a
 | ||
|    multi-byte match, then look in the log for a state
 | ||
|    from which to restart matching.  */
 | ||
| static re_dfastate_t *
 | ||
| internal_function
 | ||
| find_recover_state (reg_errcode_t *err, re_match_context_t *mctx)
 | ||
| {
 | ||
|   re_dfastate_t *cur_state;
 | ||
|   do
 | ||
|     {
 | ||
|       int max = mctx->state_log_top;
 | ||
|       int cur_str_idx = re_string_cur_idx (&mctx->input);
 | ||
| 
 | ||
|       do
 | ||
| 	{
 | ||
| 	  if (++cur_str_idx > max)
 | ||
| 	    return NULL;
 | ||
| 	  re_string_skip_bytes (&mctx->input, 1);
 | ||
| 	}
 | ||
|       while (mctx->state_log[cur_str_idx] == NULL);
 | ||
| 
 | ||
|       cur_state = merge_state_with_log (err, mctx, NULL);
 | ||
|     }
 | ||
|   while (*err == REG_NOERROR && cur_state == NULL);
 | ||
|   return cur_state;
 | ||
| }
 | ||
| 
 | ||
| /* Helper functions for transit_state.  */
 | ||
| 
 | ||
| /* From the node set CUR_NODES, pick up the nodes whose types are
 | ||
|    OP_OPEN_SUBEXP and which have corresponding back references in the regular
 | ||
|    expression. And register them to use them later for evaluating the
 | ||
|    correspoding back references.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes,
 | ||
| 			   int str_idx)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   int node_idx;
 | ||
|   reg_errcode_t err;
 | ||
| 
 | ||
|   /* TODO: This isn't efficient.
 | ||
| 	   Because there might be more than one nodes whose types are
 | ||
| 	   OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all
 | ||
| 	   nodes.
 | ||
| 	   E.g. RE: (a){2}  */
 | ||
|   for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx)
 | ||
|     {
 | ||
|       int node = cur_nodes->elems[node_idx];
 | ||
|       if (dfa->nodes[node].type == OP_OPEN_SUBEXP
 | ||
| 	  && dfa->nodes[node].opr.idx < BITSET_WORD_BITS
 | ||
| 	  && (dfa->used_bkref_map
 | ||
| 	      & ((bitset_word_t) 1 << dfa->nodes[node].opr.idx)))
 | ||
| 	{
 | ||
| 	  err = match_ctx_add_subtop (mctx, node, str_idx);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    return err;
 | ||
| 	}
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| #if 0
 | ||
| /* Return the next state to which the current state STATE will transit by
 | ||
|    accepting the current input byte.  */
 | ||
| 
 | ||
| static re_dfastate_t *
 | ||
| transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx,
 | ||
| 		  re_dfastate_t *state)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   re_node_set next_nodes;
 | ||
|   re_dfastate_t *next_state;
 | ||
|   int node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input);
 | ||
|   unsigned int context;
 | ||
| 
 | ||
|   *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1);
 | ||
|   if (BE (*err != REG_NOERROR, 0))
 | ||
|     return NULL;
 | ||
|   for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt)
 | ||
|     {
 | ||
|       int cur_node = state->nodes.elems[node_cnt];
 | ||
|       if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx))
 | ||
| 	{
 | ||
| 	  *err = re_node_set_merge (&next_nodes,
 | ||
| 				    dfa->eclosures + dfa->nexts[cur_node]);
 | ||
| 	  if (BE (*err != REG_NOERROR, 0))
 | ||
| 	    {
 | ||
| 	      re_node_set_free (&next_nodes);
 | ||
| 	      return NULL;
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
|   context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags);
 | ||
|   next_state = re_acquire_state_context (err, dfa, &next_nodes, context);
 | ||
|   /* We don't need to check errors here, since the return value of
 | ||
|      this function is next_state and ERR is already set.  */
 | ||
| 
 | ||
|   re_node_set_free (&next_nodes);
 | ||
|   re_string_skip_bytes (&mctx->input, 1);
 | ||
|   return next_state;
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   reg_errcode_t err;
 | ||
|   int i;
 | ||
| 
 | ||
|   for (i = 0; i < pstate->nodes.nelem; ++i)
 | ||
|     {
 | ||
|       re_node_set dest_nodes, *new_nodes;
 | ||
|       int cur_node_idx = pstate->nodes.elems[i];
 | ||
|       int naccepted, dest_idx;
 | ||
|       unsigned int context;
 | ||
|       re_dfastate_t *dest_state;
 | ||
| 
 | ||
|       if (!dfa->nodes[cur_node_idx].accept_mb)
 | ||
| 	continue;
 | ||
| 
 | ||
|       if (dfa->nodes[cur_node_idx].constraint)
 | ||
| 	{
 | ||
| 	  context = re_string_context_at (&mctx->input,
 | ||
| 					  re_string_cur_idx (&mctx->input),
 | ||
| 					  mctx->eflags);
 | ||
| 	  if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint,
 | ||
| 					   context))
 | ||
| 	    continue;
 | ||
| 	}
 | ||
| 
 | ||
|       /* How many bytes the node can accept?  */
 | ||
|       naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input,
 | ||
| 					   re_string_cur_idx (&mctx->input));
 | ||
|       if (naccepted == 0)
 | ||
| 	continue;
 | ||
| 
 | ||
|       /* The node can accepts `naccepted' bytes.  */
 | ||
|       dest_idx = re_string_cur_idx (&mctx->input) + naccepted;
 | ||
|       mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted
 | ||
| 			       : mctx->max_mb_elem_len);
 | ||
|       err = clean_state_log_if_needed (mctx, dest_idx);
 | ||
|       if (BE (err != REG_NOERROR, 0))
 | ||
| 	return err;
 | ||
| #ifdef DEBUG
 | ||
|       assert (dfa->nexts[cur_node_idx] != -1);
 | ||
| #endif
 | ||
|       new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx];
 | ||
| 
 | ||
|       dest_state = mctx->state_log[dest_idx];
 | ||
|       if (dest_state == NULL)
 | ||
| 	dest_nodes = *new_nodes;
 | ||
|       else
 | ||
| 	{
 | ||
| 	  err = re_node_set_init_union (&dest_nodes,
 | ||
| 					dest_state->entrance_nodes, new_nodes);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    return err;
 | ||
| 	}
 | ||
|       context = re_string_context_at (&mctx->input, dest_idx - 1,
 | ||
| 				      mctx->eflags);
 | ||
|       mctx->state_log[dest_idx]
 | ||
| 	= re_acquire_state_context (&err, dfa, &dest_nodes, context);
 | ||
|       if (dest_state != NULL)
 | ||
| 	re_node_set_free (&dest_nodes);
 | ||
|       if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0))
 | ||
| 	return err;
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   reg_errcode_t err;
 | ||
|   int i;
 | ||
|   int cur_str_idx = re_string_cur_idx (&mctx->input);
 | ||
| 
 | ||
|   for (i = 0; i < nodes->nelem; ++i)
 | ||
|     {
 | ||
|       int dest_str_idx, prev_nelem, bkc_idx;
 | ||
|       int node_idx = nodes->elems[i];
 | ||
|       unsigned int context;
 | ||
|       const re_token_t *node = dfa->nodes + node_idx;
 | ||
|       re_node_set *new_dest_nodes;
 | ||
| 
 | ||
|       /* Check whether `node' is a backreference or not.  */
 | ||
|       if (node->type != OP_BACK_REF)
 | ||
| 	continue;
 | ||
| 
 | ||
|       if (node->constraint)
 | ||
| 	{
 | ||
| 	  context = re_string_context_at (&mctx->input, cur_str_idx,
 | ||
| 					  mctx->eflags);
 | ||
| 	  if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
 | ||
| 	    continue;
 | ||
| 	}
 | ||
| 
 | ||
|       /* `node' is a backreference.
 | ||
| 	 Check the substring which the substring matched.  */
 | ||
|       bkc_idx = mctx->nbkref_ents;
 | ||
|       err = get_subexp (mctx, node_idx, cur_str_idx);
 | ||
|       if (BE (err != REG_NOERROR, 0))
 | ||
| 	goto free_return;
 | ||
| 
 | ||
|       /* And add the epsilon closures (which is `new_dest_nodes') of
 | ||
| 	 the backreference to appropriate state_log.  */
 | ||
| #ifdef DEBUG
 | ||
|       assert (dfa->nexts[node_idx] != -1);
 | ||
| #endif
 | ||
|       for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx)
 | ||
| 	{
 | ||
| 	  int subexp_len;
 | ||
| 	  re_dfastate_t *dest_state;
 | ||
| 	  struct re_backref_cache_entry *bkref_ent;
 | ||
| 	  bkref_ent = mctx->bkref_ents + bkc_idx;
 | ||
| 	  if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx)
 | ||
| 	    continue;
 | ||
| 	  subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from;
 | ||
| 	  new_dest_nodes = (subexp_len == 0
 | ||
| 			    ? dfa->eclosures + dfa->edests[node_idx].elems[0]
 | ||
| 			    : dfa->eclosures + dfa->nexts[node_idx]);
 | ||
| 	  dest_str_idx = (cur_str_idx + bkref_ent->subexp_to
 | ||
| 			  - bkref_ent->subexp_from);
 | ||
| 	  context = re_string_context_at (&mctx->input, dest_str_idx - 1,
 | ||
| 					  mctx->eflags);
 | ||
| 	  dest_state = mctx->state_log[dest_str_idx];
 | ||
| 	  prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0
 | ||
| 			: mctx->state_log[cur_str_idx]->nodes.nelem);
 | ||
| 	  /* Add `new_dest_node' to state_log.  */
 | ||
| 	  if (dest_state == NULL)
 | ||
| 	    {
 | ||
| 	      mctx->state_log[dest_str_idx]
 | ||
| 		= re_acquire_state_context (&err, dfa, new_dest_nodes,
 | ||
| 					    context);
 | ||
| 	      if (BE (mctx->state_log[dest_str_idx] == NULL
 | ||
| 		      && err != REG_NOERROR, 0))
 | ||
| 		goto free_return;
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      re_node_set dest_nodes;
 | ||
| 	      err = re_node_set_init_union (&dest_nodes,
 | ||
| 					    dest_state->entrance_nodes,
 | ||
| 					    new_dest_nodes);
 | ||
| 	      if (BE (err != REG_NOERROR, 0))
 | ||
| 		{
 | ||
| 		  re_node_set_free (&dest_nodes);
 | ||
| 		  goto free_return;
 | ||
| 		}
 | ||
| 	      mctx->state_log[dest_str_idx]
 | ||
| 		= re_acquire_state_context (&err, dfa, &dest_nodes, context);
 | ||
| 	      re_node_set_free (&dest_nodes);
 | ||
| 	      if (BE (mctx->state_log[dest_str_idx] == NULL
 | ||
| 		      && err != REG_NOERROR, 0))
 | ||
| 		goto free_return;
 | ||
| 	    }
 | ||
| 	  /* We need to check recursively if the backreference can epsilon
 | ||
| 	     transit.  */
 | ||
| 	  if (subexp_len == 0
 | ||
| 	      && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem)
 | ||
| 	    {
 | ||
| 	      err = check_subexp_matching_top (mctx, new_dest_nodes,
 | ||
| 					       cur_str_idx);
 | ||
| 	      if (BE (err != REG_NOERROR, 0))
 | ||
| 		goto free_return;
 | ||
| 	      err = transit_state_bkref (mctx, new_dest_nodes);
 | ||
| 	      if (BE (err != REG_NOERROR, 0))
 | ||
| 		goto free_return;
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
|   err = REG_NOERROR;
 | ||
|  free_return:
 | ||
|   return err;
 | ||
| }
 | ||
| 
 | ||
| /* Enumerate all the candidates which the backreference BKREF_NODE can match
 | ||
|    at BKREF_STR_IDX, and register them by match_ctx_add_entry().
 | ||
|    Note that we might collect inappropriate candidates here.
 | ||
|    However, the cost of checking them strictly here is too high, then we
 | ||
|    delay these checking for prune_impossible_nodes().  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| get_subexp (re_match_context_t *mctx, int bkref_node, int bkref_str_idx)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   int subexp_num, sub_top_idx;
 | ||
|   const char *buf = (const char *) re_string_get_buffer (&mctx->input);
 | ||
|   /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX.  */
 | ||
|   int cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx);
 | ||
|   if (cache_idx != -1)
 | ||
|     {
 | ||
|       const struct re_backref_cache_entry *entry
 | ||
| 	= mctx->bkref_ents + cache_idx;
 | ||
|       do
 | ||
| 	if (entry->node == bkref_node)
 | ||
| 	  return REG_NOERROR; /* We already checked it.  */
 | ||
|       while (entry++->more);
 | ||
|     }
 | ||
| 
 | ||
|   subexp_num = dfa->nodes[bkref_node].opr.idx;
 | ||
| 
 | ||
|   /* For each sub expression  */
 | ||
|   for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx)
 | ||
|     {
 | ||
|       reg_errcode_t err;
 | ||
|       re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx];
 | ||
|       re_sub_match_last_t *sub_last;
 | ||
|       int sub_last_idx, sl_str, bkref_str_off;
 | ||
| 
 | ||
|       if (dfa->nodes[sub_top->node].opr.idx != subexp_num)
 | ||
| 	continue; /* It isn't related.  */
 | ||
| 
 | ||
|       sl_str = sub_top->str_idx;
 | ||
|       bkref_str_off = bkref_str_idx;
 | ||
|       /* At first, check the last node of sub expressions we already
 | ||
| 	 evaluated.  */
 | ||
|       for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx)
 | ||
| 	{
 | ||
| 	  int sl_str_diff;
 | ||
| 	  sub_last = sub_top->lasts[sub_last_idx];
 | ||
| 	  sl_str_diff = sub_last->str_idx - sl_str;
 | ||
| 	  /* The matched string by the sub expression match with the substring
 | ||
| 	     at the back reference?  */
 | ||
| 	  if (sl_str_diff > 0)
 | ||
| 	    {
 | ||
| 	      if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0))
 | ||
| 		{
 | ||
| 		  /* Not enough chars for a successful match.  */
 | ||
| 		  if (bkref_str_off + sl_str_diff > mctx->input.len)
 | ||
| 		    break;
 | ||
| 
 | ||
| 		  err = clean_state_log_if_needed (mctx,
 | ||
| 						   bkref_str_off
 | ||
| 						   + sl_str_diff);
 | ||
| 		  if (BE (err != REG_NOERROR, 0))
 | ||
| 		    return err;
 | ||
| 		  buf = (const char *) re_string_get_buffer (&mctx->input);
 | ||
| 		}
 | ||
| 	      if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0)
 | ||
| 		/* We don't need to search this sub expression any more.  */
 | ||
| 		break;
 | ||
| 	    }
 | ||
| 	  bkref_str_off += sl_str_diff;
 | ||
| 	  sl_str += sl_str_diff;
 | ||
| 	  err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node,
 | ||
| 				bkref_str_idx);
 | ||
| 
 | ||
| 	  /* Reload buf, since the preceding call might have reallocated
 | ||
| 	     the buffer.  */
 | ||
| 	  buf = (const char *) re_string_get_buffer (&mctx->input);
 | ||
| 
 | ||
| 	  if (err == REG_NOMATCH)
 | ||
| 	    continue;
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    return err;
 | ||
| 	}
 | ||
| 
 | ||
|       if (sub_last_idx < sub_top->nlasts)
 | ||
| 	continue;
 | ||
|       if (sub_last_idx > 0)
 | ||
| 	++sl_str;
 | ||
|       /* Then, search for the other last nodes of the sub expression.  */
 | ||
|       for (; sl_str <= bkref_str_idx; ++sl_str)
 | ||
| 	{
 | ||
| 	  int cls_node, sl_str_off;
 | ||
| 	  const re_node_set *nodes;
 | ||
| 	  sl_str_off = sl_str - sub_top->str_idx;
 | ||
| 	  /* The matched string by the sub expression match with the substring
 | ||
| 	     at the back reference?  */
 | ||
| 	  if (sl_str_off > 0)
 | ||
| 	    {
 | ||
| 	      if (BE (bkref_str_off >= mctx->input.valid_len, 0))
 | ||
| 		{
 | ||
| 		  /* If we are at the end of the input, we cannot match.  */
 | ||
| 		  if (bkref_str_off >= mctx->input.len)
 | ||
| 		    break;
 | ||
| 
 | ||
| 		  err = extend_buffers (mctx);
 | ||
| 		  if (BE (err != REG_NOERROR, 0))
 | ||
| 		    return err;
 | ||
| 
 | ||
| 		  buf = (const char *) re_string_get_buffer (&mctx->input);
 | ||
| 		}
 | ||
| 	      if (buf [bkref_str_off++] != buf[sl_str - 1])
 | ||
| 		break; /* We don't need to search this sub expression
 | ||
| 			  any more.  */
 | ||
| 	    }
 | ||
| 	  if (mctx->state_log[sl_str] == NULL)
 | ||
| 	    continue;
 | ||
| 	  /* Does this state have a ')' of the sub expression?  */
 | ||
| 	  nodes = &mctx->state_log[sl_str]->nodes;
 | ||
| 	  cls_node = find_subexp_node (dfa, nodes, subexp_num,
 | ||
| 				       OP_CLOSE_SUBEXP);
 | ||
| 	  if (cls_node == -1)
 | ||
| 	    continue; /* No.  */
 | ||
| 	  if (sub_top->path == NULL)
 | ||
| 	    {
 | ||
| 	      sub_top->path = calloc (sizeof (state_array_t),
 | ||
| 				      sl_str - sub_top->str_idx + 1);
 | ||
| 	      if (sub_top->path == NULL)
 | ||
| 		return REG_ESPACE;
 | ||
| 	    }
 | ||
| 	  /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node
 | ||
| 	     in the current context?  */
 | ||
| 	  err = check_arrival (mctx, sub_top->path, sub_top->node,
 | ||
| 			       sub_top->str_idx, cls_node, sl_str,
 | ||
| 			       OP_CLOSE_SUBEXP);
 | ||
| 	  if (err == REG_NOMATCH)
 | ||
| 	      continue;
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	      return err;
 | ||
| 	  sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str);
 | ||
| 	  if (BE (sub_last == NULL, 0))
 | ||
| 	    return REG_ESPACE;
 | ||
| 	  err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node,
 | ||
| 				bkref_str_idx);
 | ||
| 	  if (err == REG_NOMATCH)
 | ||
| 	    continue;
 | ||
| 	}
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Helper functions for get_subexp().  */
 | ||
| 
 | ||
| /* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR.
 | ||
|    If it can arrive, register the sub expression expressed with SUB_TOP
 | ||
|    and SUB_LAST.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top,
 | ||
| 		re_sub_match_last_t *sub_last, int bkref_node, int bkref_str)
 | ||
| {
 | ||
|   reg_errcode_t err;
 | ||
|   int to_idx;
 | ||
|   /* Can the subexpression arrive the back reference?  */
 | ||
|   err = check_arrival (mctx, &sub_last->path, sub_last->node,
 | ||
| 		       sub_last->str_idx, bkref_node, bkref_str,
 | ||
| 		       OP_OPEN_SUBEXP);
 | ||
|   if (err != REG_NOERROR)
 | ||
|     return err;
 | ||
|   err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx,
 | ||
| 			     sub_last->str_idx);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     return err;
 | ||
|   to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx;
 | ||
|   return clean_state_log_if_needed (mctx, to_idx);
 | ||
| }
 | ||
| 
 | ||
| /* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX.
 | ||
|    Search '(' if FL_OPEN, or search ')' otherwise.
 | ||
|    TODO: This function isn't efficient...
 | ||
| 	 Because there might be more than one nodes whose types are
 | ||
| 	 OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all
 | ||
| 	 nodes.
 | ||
| 	 E.g. RE: (a){2}  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes,
 | ||
| 		  int subexp_idx, int type)
 | ||
| {
 | ||
|   int cls_idx;
 | ||
|   for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx)
 | ||
|     {
 | ||
|       int cls_node = nodes->elems[cls_idx];
 | ||
|       const re_token_t *node = dfa->nodes + cls_node;
 | ||
|       if (node->type == type
 | ||
| 	  && node->opr.idx == subexp_idx)
 | ||
| 	return cls_node;
 | ||
|     }
 | ||
|   return -1;
 | ||
| }
 | ||
| 
 | ||
| /* Check whether the node TOP_NODE at TOP_STR can arrive to the node
 | ||
|    LAST_NODE at LAST_STR.  We record the path onto PATH since it will be
 | ||
|    heavily reused.
 | ||
|    Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| check_arrival (re_match_context_t *mctx, state_array_t *path, int top_node,
 | ||
| 	       int top_str, int last_node, int last_str, int type)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   reg_errcode_t err = REG_NOERROR;
 | ||
|   int subexp_num, backup_cur_idx, str_idx, null_cnt;
 | ||
|   re_dfastate_t *cur_state = NULL;
 | ||
|   re_node_set *cur_nodes, next_nodes;
 | ||
|   re_dfastate_t **backup_state_log;
 | ||
|   unsigned int context;
 | ||
| 
 | ||
|   subexp_num = dfa->nodes[top_node].opr.idx;
 | ||
|   /* Extend the buffer if we need.  */
 | ||
|   if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0))
 | ||
|     {
 | ||
|       re_dfastate_t **new_array;
 | ||
|       int old_alloc = path->alloc;
 | ||
|       path->alloc += last_str + mctx->max_mb_elem_len + 1;
 | ||
|       new_array = re_realloc (path->array, re_dfastate_t *, path->alloc);
 | ||
|       if (BE (new_array == NULL, 0))
 | ||
| 	{
 | ||
| 	  path->alloc = old_alloc;
 | ||
| 	  return REG_ESPACE;
 | ||
| 	}
 | ||
|       path->array = new_array;
 | ||
|       memset (new_array + old_alloc, '\0',
 | ||
| 	      sizeof (re_dfastate_t *) * (path->alloc - old_alloc));
 | ||
|     }
 | ||
| 
 | ||
|   str_idx = path->next_idx ? path->next_idx : top_str;
 | ||
| 
 | ||
|   /* Temporary modify MCTX.  */
 | ||
|   backup_state_log = mctx->state_log;
 | ||
|   backup_cur_idx = mctx->input.cur_idx;
 | ||
|   mctx->state_log = path->array;
 | ||
|   mctx->input.cur_idx = str_idx;
 | ||
| 
 | ||
|   /* Setup initial node set.  */
 | ||
|   context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags);
 | ||
|   if (str_idx == top_str)
 | ||
|     {
 | ||
|       err = re_node_set_init_1 (&next_nodes, top_node);
 | ||
|       if (BE (err != REG_NOERROR, 0))
 | ||
| 	return err;
 | ||
|       err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type);
 | ||
|       if (BE (err != REG_NOERROR, 0))
 | ||
| 	{
 | ||
| 	  re_node_set_free (&next_nodes);
 | ||
| 	  return err;
 | ||
| 	}
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       cur_state = mctx->state_log[str_idx];
 | ||
|       if (cur_state && cur_state->has_backref)
 | ||
| 	{
 | ||
| 	  err = re_node_set_init_copy (&next_nodes, &cur_state->nodes);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    return err;
 | ||
| 	}
 | ||
|       else
 | ||
| 	re_node_set_init_empty (&next_nodes);
 | ||
|     }
 | ||
|   if (str_idx == top_str || (cur_state && cur_state->has_backref))
 | ||
|     {
 | ||
|       if (next_nodes.nelem)
 | ||
| 	{
 | ||
| 	  err = expand_bkref_cache (mctx, &next_nodes, str_idx,
 | ||
| 				    subexp_num, type);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    {
 | ||
| 	      re_node_set_free (&next_nodes);
 | ||
| 	      return err;
 | ||
| 	    }
 | ||
| 	}
 | ||
|       cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context);
 | ||
|       if (BE (cur_state == NULL && err != REG_NOERROR, 0))
 | ||
| 	{
 | ||
| 	  re_node_set_free (&next_nodes);
 | ||
| 	  return err;
 | ||
| 	}
 | ||
|       mctx->state_log[str_idx] = cur_state;
 | ||
|     }
 | ||
| 
 | ||
|   for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;)
 | ||
|     {
 | ||
|       re_node_set_empty (&next_nodes);
 | ||
|       if (mctx->state_log[str_idx + 1])
 | ||
| 	{
 | ||
| 	  err = re_node_set_merge (&next_nodes,
 | ||
| 				   &mctx->state_log[str_idx + 1]->nodes);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    {
 | ||
| 	      re_node_set_free (&next_nodes);
 | ||
| 	      return err;
 | ||
| 	    }
 | ||
| 	}
 | ||
|       if (cur_state)
 | ||
| 	{
 | ||
| 	  err = check_arrival_add_next_nodes (mctx, str_idx,
 | ||
| 					      &cur_state->non_eps_nodes,
 | ||
| 					      &next_nodes);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    {
 | ||
| 	      re_node_set_free (&next_nodes);
 | ||
| 	      return err;
 | ||
| 	    }
 | ||
| 	}
 | ||
|       ++str_idx;
 | ||
|       if (next_nodes.nelem)
 | ||
| 	{
 | ||
| 	  err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    {
 | ||
| 	      re_node_set_free (&next_nodes);
 | ||
| 	      return err;
 | ||
| 	    }
 | ||
| 	  err = expand_bkref_cache (mctx, &next_nodes, str_idx,
 | ||
| 				    subexp_num, type);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    {
 | ||
| 	      re_node_set_free (&next_nodes);
 | ||
| 	      return err;
 | ||
| 	    }
 | ||
| 	}
 | ||
|       context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags);
 | ||
|       cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context);
 | ||
|       if (BE (cur_state == NULL && err != REG_NOERROR, 0))
 | ||
| 	{
 | ||
| 	  re_node_set_free (&next_nodes);
 | ||
| 	  return err;
 | ||
| 	}
 | ||
|       mctx->state_log[str_idx] = cur_state;
 | ||
|       null_cnt = cur_state == NULL ? null_cnt + 1 : 0;
 | ||
|     }
 | ||
|   re_node_set_free (&next_nodes);
 | ||
|   cur_nodes = (mctx->state_log[last_str] == NULL ? NULL
 | ||
| 	       : &mctx->state_log[last_str]->nodes);
 | ||
|   path->next_idx = str_idx;
 | ||
| 
 | ||
|   /* Fix MCTX.  */
 | ||
|   mctx->state_log = backup_state_log;
 | ||
|   mctx->input.cur_idx = backup_cur_idx;
 | ||
| 
 | ||
|   /* Then check the current node set has the node LAST_NODE.  */
 | ||
|   if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node))
 | ||
|     return REG_NOERROR;
 | ||
| 
 | ||
|   return REG_NOMATCH;
 | ||
| }
 | ||
| 
 | ||
| /* Helper functions for check_arrival.  */
 | ||
| 
 | ||
| /* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them
 | ||
|    to NEXT_NODES.
 | ||
|    TODO: This function is similar to the functions transit_state*(),
 | ||
| 	 however this function has many additional works.
 | ||
| 	 Can't we unify them?  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| check_arrival_add_next_nodes (re_match_context_t *mctx, int str_idx,
 | ||
| 			      re_node_set *cur_nodes, re_node_set *next_nodes)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   int result;
 | ||
|   int cur_idx;
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   reg_errcode_t err = REG_NOERROR;
 | ||
| #endif
 | ||
|   re_node_set union_set;
 | ||
|   re_node_set_init_empty (&union_set);
 | ||
|   for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx)
 | ||
|     {
 | ||
|       int naccepted = 0;
 | ||
|       int cur_node = cur_nodes->elems[cur_idx];
 | ||
| #ifdef DEBUG
 | ||
|       re_token_type_t type = dfa->nodes[cur_node].type;
 | ||
|       assert (!IS_EPSILON_NODE (type));
 | ||
| #endif
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       /* If the node may accept `multi byte'.  */
 | ||
|       if (dfa->nodes[cur_node].accept_mb)
 | ||
| 	{
 | ||
| 	  naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input,
 | ||
| 					       str_idx);
 | ||
| 	  if (naccepted > 1)
 | ||
| 	    {
 | ||
| 	      re_dfastate_t *dest_state;
 | ||
| 	      int next_node = dfa->nexts[cur_node];
 | ||
| 	      int next_idx = str_idx + naccepted;
 | ||
| 	      dest_state = mctx->state_log[next_idx];
 | ||
| 	      re_node_set_empty (&union_set);
 | ||
| 	      if (dest_state)
 | ||
| 		{
 | ||
| 		  err = re_node_set_merge (&union_set, &dest_state->nodes);
 | ||
| 		  if (BE (err != REG_NOERROR, 0))
 | ||
| 		    {
 | ||
| 		      re_node_set_free (&union_set);
 | ||
| 		      return err;
 | ||
| 		    }
 | ||
| 		}
 | ||
| 	      result = re_node_set_insert (&union_set, next_node);
 | ||
| 	      if (BE (result < 0, 0))
 | ||
| 		{
 | ||
| 		  re_node_set_free (&union_set);
 | ||
| 		  return REG_ESPACE;
 | ||
| 		}
 | ||
| 	      mctx->state_log[next_idx] = re_acquire_state (&err, dfa,
 | ||
| 							    &union_set);
 | ||
| 	      if (BE (mctx->state_log[next_idx] == NULL
 | ||
| 		      && err != REG_NOERROR, 0))
 | ||
| 		{
 | ||
| 		  re_node_set_free (&union_set);
 | ||
| 		  return err;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	}
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
|       if (naccepted
 | ||
| 	  || check_node_accept (mctx, dfa->nodes + cur_node, str_idx))
 | ||
| 	{
 | ||
| 	  result = re_node_set_insert (next_nodes, dfa->nexts[cur_node]);
 | ||
| 	  if (BE (result < 0, 0))
 | ||
| 	    {
 | ||
| 	      re_node_set_free (&union_set);
 | ||
| 	      return REG_ESPACE;
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
|   re_node_set_free (&union_set);
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* For all the nodes in CUR_NODES, add the epsilon closures of them to
 | ||
|    CUR_NODES, however exclude the nodes which are:
 | ||
|     - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN.
 | ||
|     - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN.
 | ||
| */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| check_arrival_expand_ecl (const re_dfa_t *dfa, re_node_set *cur_nodes,
 | ||
| 			  int ex_subexp, int type)
 | ||
| {
 | ||
|   reg_errcode_t err;
 | ||
|   int idx, outside_node;
 | ||
|   re_node_set new_nodes;
 | ||
| #ifdef DEBUG
 | ||
|   assert (cur_nodes->nelem);
 | ||
| #endif
 | ||
|   err = re_node_set_alloc (&new_nodes, cur_nodes->nelem);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     return err;
 | ||
|   /* Create a new node set NEW_NODES with the nodes which are epsilon
 | ||
|      closures of the node in CUR_NODES.  */
 | ||
| 
 | ||
|   for (idx = 0; idx < cur_nodes->nelem; ++idx)
 | ||
|     {
 | ||
|       int cur_node = cur_nodes->elems[idx];
 | ||
|       const re_node_set *eclosure = dfa->eclosures + cur_node;
 | ||
|       outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type);
 | ||
|       if (outside_node == -1)
 | ||
| 	{
 | ||
| 	  /* There are no problematic nodes, just merge them.  */
 | ||
| 	  err = re_node_set_merge (&new_nodes, eclosure);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    {
 | ||
| 	      re_node_set_free (&new_nodes);
 | ||
| 	      return err;
 | ||
| 	    }
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  /* There are problematic nodes, re-calculate incrementally.  */
 | ||
| 	  err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node,
 | ||
| 					      ex_subexp, type);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    {
 | ||
| 	      re_node_set_free (&new_nodes);
 | ||
| 	      return err;
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
|   re_node_set_free (cur_nodes);
 | ||
|   *cur_nodes = new_nodes;
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Helper function for check_arrival_expand_ecl.
 | ||
|    Check incrementally the epsilon closure of TARGET, and if it isn't
 | ||
|    problematic append it to DST_NODES.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| check_arrival_expand_ecl_sub (const re_dfa_t *dfa, re_node_set *dst_nodes,
 | ||
| 			      int target, int ex_subexp, int type)
 | ||
| {
 | ||
|   int cur_node;
 | ||
|   for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);)
 | ||
|     {
 | ||
|       int err;
 | ||
| 
 | ||
|       if (dfa->nodes[cur_node].type == type
 | ||
| 	  && dfa->nodes[cur_node].opr.idx == ex_subexp)
 | ||
| 	{
 | ||
| 	  if (type == OP_CLOSE_SUBEXP)
 | ||
| 	    {
 | ||
| 	      err = re_node_set_insert (dst_nodes, cur_node);
 | ||
| 	      if (BE (err == -1, 0))
 | ||
| 		return REG_ESPACE;
 | ||
| 	    }
 | ||
| 	  break;
 | ||
| 	}
 | ||
|       err = re_node_set_insert (dst_nodes, cur_node);
 | ||
|       if (BE (err == -1, 0))
 | ||
| 	return REG_ESPACE;
 | ||
|       if (dfa->edests[cur_node].nelem == 0)
 | ||
| 	break;
 | ||
|       if (dfa->edests[cur_node].nelem == 2)
 | ||
| 	{
 | ||
| 	  err = check_arrival_expand_ecl_sub (dfa, dst_nodes,
 | ||
| 					      dfa->edests[cur_node].elems[1],
 | ||
| 					      ex_subexp, type);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    return err;
 | ||
| 	}
 | ||
|       cur_node = dfa->edests[cur_node].elems[0];
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* For all the back references in the current state, calculate the
 | ||
|    destination of the back references by the appropriate entry
 | ||
|    in MCTX->BKREF_ENTS.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes,
 | ||
| 		    int cur_str, int subexp_num, int type)
 | ||
| {
 | ||
|   const re_dfa_t *const dfa = mctx->dfa;
 | ||
|   reg_errcode_t err;
 | ||
|   int cache_idx_start = search_cur_bkref_entry (mctx, cur_str);
 | ||
|   struct re_backref_cache_entry *ent;
 | ||
| 
 | ||
|   if (cache_idx_start == -1)
 | ||
|     return REG_NOERROR;
 | ||
| 
 | ||
|  restart:
 | ||
|   ent = mctx->bkref_ents + cache_idx_start;
 | ||
|   do
 | ||
|     {
 | ||
|       int to_idx, next_node;
 | ||
| 
 | ||
|       /* Is this entry ENT is appropriate?  */
 | ||
|       if (!re_node_set_contains (cur_nodes, ent->node))
 | ||
| 	continue; /* No.  */
 | ||
| 
 | ||
|       to_idx = cur_str + ent->subexp_to - ent->subexp_from;
 | ||
|       /* Calculate the destination of the back reference, and append it
 | ||
| 	 to MCTX->STATE_LOG.  */
 | ||
|       if (to_idx == cur_str)
 | ||
| 	{
 | ||
| 	  /* The backreference did epsilon transit, we must re-check all the
 | ||
| 	     node in the current state.  */
 | ||
| 	  re_node_set new_dests;
 | ||
| 	  reg_errcode_t err2, err3;
 | ||
| 	  next_node = dfa->edests[ent->node].elems[0];
 | ||
| 	  if (re_node_set_contains (cur_nodes, next_node))
 | ||
| 	    continue;
 | ||
| 	  err = re_node_set_init_1 (&new_dests, next_node);
 | ||
| 	  err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type);
 | ||
| 	  err3 = re_node_set_merge (cur_nodes, &new_dests);
 | ||
| 	  re_node_set_free (&new_dests);
 | ||
| 	  if (BE (err != REG_NOERROR || err2 != REG_NOERROR
 | ||
| 		  || err3 != REG_NOERROR, 0))
 | ||
| 	    {
 | ||
| 	      err = (err != REG_NOERROR ? err
 | ||
| 		     : (err2 != REG_NOERROR ? err2 : err3));
 | ||
| 	      return err;
 | ||
| 	    }
 | ||
| 	  /* TODO: It is still inefficient...  */
 | ||
| 	  goto restart;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  re_node_set union_set;
 | ||
| 	  next_node = dfa->nexts[ent->node];
 | ||
| 	  if (mctx->state_log[to_idx])
 | ||
| 	    {
 | ||
| 	      int ret;
 | ||
| 	      if (re_node_set_contains (&mctx->state_log[to_idx]->nodes,
 | ||
| 					next_node))
 | ||
| 		continue;
 | ||
| 	      err = re_node_set_init_copy (&union_set,
 | ||
| 					   &mctx->state_log[to_idx]->nodes);
 | ||
| 	      ret = re_node_set_insert (&union_set, next_node);
 | ||
| 	      if (BE (err != REG_NOERROR || ret < 0, 0))
 | ||
| 		{
 | ||
| 		  re_node_set_free (&union_set);
 | ||
| 		  err = err != REG_NOERROR ? err : REG_ESPACE;
 | ||
| 		  return err;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      err = re_node_set_init_1 (&union_set, next_node);
 | ||
| 	      if (BE (err != REG_NOERROR, 0))
 | ||
| 		return err;
 | ||
| 	    }
 | ||
| 	  mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set);
 | ||
| 	  re_node_set_free (&union_set);
 | ||
| 	  if (BE (mctx->state_log[to_idx] == NULL
 | ||
| 		  && err != REG_NOERROR, 0))
 | ||
| 	    return err;
 | ||
| 	}
 | ||
|     }
 | ||
|   while (ent++->more);
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Build transition table for the state.
 | ||
|    Return 1 if succeeded, otherwise return NULL.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| build_trtable (const re_dfa_t *dfa, re_dfastate_t *state)
 | ||
| {
 | ||
|   reg_errcode_t err;
 | ||
|   int i, j, ch, need_word_trtable = 0;
 | ||
|   bitset_word_t elem, mask;
 | ||
|   bool dests_node_malloced = false;
 | ||
|   bool dest_states_malloced = false;
 | ||
|   int ndests; /* Number of the destination states from `state'.  */
 | ||
|   re_dfastate_t **trtable;
 | ||
|   re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl;
 | ||
|   re_node_set follows, *dests_node;
 | ||
|   bitset_t *dests_ch;
 | ||
|   bitset_t acceptable;
 | ||
| 
 | ||
|   struct dests_alloc
 | ||
|   {
 | ||
|     re_node_set dests_node[SBC_MAX];
 | ||
|     bitset_t dests_ch[SBC_MAX];
 | ||
|   } *dests_alloc;
 | ||
| 
 | ||
|   /* We build DFA states which corresponds to the destination nodes
 | ||
|      from `state'.  `dests_node[i]' represents the nodes which i-th
 | ||
|      destination state contains, and `dests_ch[i]' represents the
 | ||
|      characters which i-th destination state accepts.  */
 | ||
| #ifdef HAVE_ALLOCA
 | ||
|   if (__libc_use_alloca (sizeof (struct dests_alloc)))
 | ||
|     dests_alloc = (struct dests_alloc *) alloca (sizeof (struct dests_alloc));
 | ||
|   else
 | ||
| #endif
 | ||
|     {
 | ||
|       dests_alloc = re_malloc (struct dests_alloc, 1);
 | ||
|       if (BE (dests_alloc == NULL, 0))
 | ||
| 	return 0;
 | ||
|       dests_node_malloced = true;
 | ||
|     }
 | ||
|   dests_node = dests_alloc->dests_node;
 | ||
|   dests_ch = dests_alloc->dests_ch;
 | ||
| 
 | ||
|   /* Initialize transiton table.  */
 | ||
|   state->word_trtable = state->trtable = NULL;
 | ||
| 
 | ||
|   /* At first, group all nodes belonging to `state' into several
 | ||
|      destinations.  */
 | ||
|   ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch);
 | ||
|   if (BE (ndests <= 0, 0))
 | ||
|     {
 | ||
|       if (dests_node_malloced)
 | ||
| 	free (dests_alloc);
 | ||
|       /* Return 0 in case of an error, 1 otherwise.  */
 | ||
|       if (ndests == 0)
 | ||
| 	{
 | ||
| 	  state->trtable = (re_dfastate_t **)
 | ||
| 	    calloc (sizeof (re_dfastate_t *), SBC_MAX);
 | ||
| 	  return 1;
 | ||
| 	}
 | ||
|       return 0;
 | ||
|     }
 | ||
| 
 | ||
|   err = re_node_set_alloc (&follows, ndests + 1);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     goto out_free;
 | ||
| 
 | ||
|   /* Avoid arithmetic overflow in size calculation.  */
 | ||
|   if (BE ((((SIZE_MAX - (sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX)
 | ||
| 	    / (3 * sizeof (re_dfastate_t *)))
 | ||
| 	   < ndests),
 | ||
| 	  0))
 | ||
|     goto out_free;
 | ||
| 
 | ||
| #ifdef HAVE_ALLOCA
 | ||
|   if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX
 | ||
| 			 + ndests * 3 * sizeof (re_dfastate_t *)))
 | ||
|     dest_states = (re_dfastate_t **)
 | ||
|       alloca (ndests * 3 * sizeof (re_dfastate_t *));
 | ||
|   else
 | ||
| #endif
 | ||
|     {
 | ||
|       dest_states = (re_dfastate_t **)
 | ||
| 	malloc (ndests * 3 * sizeof (re_dfastate_t *));
 | ||
|       if (BE (dest_states == NULL, 0))
 | ||
| 	{
 | ||
| out_free:
 | ||
| 	  if (dest_states_malloced)
 | ||
| 	    free (dest_states);
 | ||
| 	  re_node_set_free (&follows);
 | ||
| 	  for (i = 0; i < ndests; ++i)
 | ||
| 	    re_node_set_free (dests_node + i);
 | ||
| 	  if (dests_node_malloced)
 | ||
| 	    free (dests_alloc);
 | ||
| 	  return 0;
 | ||
| 	}
 | ||
|       dest_states_malloced = true;
 | ||
|     }
 | ||
|   dest_states_word = dest_states + ndests;
 | ||
|   dest_states_nl = dest_states_word + ndests;
 | ||
|   bitset_empty (acceptable);
 | ||
| 
 | ||
|   /* Then build the states for all destinations.  */
 | ||
|   for (i = 0; i < ndests; ++i)
 | ||
|     {
 | ||
|       int next_node;
 | ||
|       re_node_set_empty (&follows);
 | ||
|       /* Merge the follows of this destination states.  */
 | ||
|       for (j = 0; j < dests_node[i].nelem; ++j)
 | ||
| 	{
 | ||
| 	  next_node = dfa->nexts[dests_node[i].elems[j]];
 | ||
| 	  if (next_node != -1)
 | ||
| 	    {
 | ||
| 	      err = re_node_set_merge (&follows, dfa->eclosures + next_node);
 | ||
| 	      if (BE (err != REG_NOERROR, 0))
 | ||
| 		goto out_free;
 | ||
| 	    }
 | ||
| 	}
 | ||
|       dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0);
 | ||
|       if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0))
 | ||
| 	goto out_free;
 | ||
|       /* If the new state has context constraint,
 | ||
| 	 build appropriate states for these contexts.  */
 | ||
|       if (dest_states[i]->has_constraint)
 | ||
| 	{
 | ||
| 	  dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows,
 | ||
| 							  CONTEXT_WORD);
 | ||
| 	  if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0))
 | ||
| 	    goto out_free;
 | ||
| 
 | ||
| 	  if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1)
 | ||
| 	    need_word_trtable = 1;
 | ||
| 
 | ||
| 	  dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows,
 | ||
| 							CONTEXT_NEWLINE);
 | ||
| 	  if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0))
 | ||
| 	    goto out_free;
 | ||
|  	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  dest_states_word[i] = dest_states[i];
 | ||
| 	  dest_states_nl[i] = dest_states[i];
 | ||
| 	}
 | ||
|       bitset_merge (acceptable, dests_ch[i]);
 | ||
|     }
 | ||
| 
 | ||
|   if (!BE (need_word_trtable, 0))
 | ||
|     {
 | ||
|       /* We don't care about whether the following character is a word
 | ||
| 	 character, or we are in a single-byte character set so we can
 | ||
| 	 discern by looking at the character code: allocate a
 | ||
| 	 256-entry transition table.  */
 | ||
|       trtable = state->trtable =
 | ||
| 	(re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX);
 | ||
|       if (BE (trtable == NULL, 0))
 | ||
| 	goto out_free;
 | ||
| 
 | ||
|       /* For all characters ch...:  */
 | ||
|       for (i = 0; i < BITSET_WORDS; ++i)
 | ||
| 	for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1;
 | ||
| 	     elem;
 | ||
| 	     mask <<= 1, elem >>= 1, ++ch)
 | ||
| 	  if (BE (elem & 1, 0))
 | ||
| 	    {
 | ||
| 	      /* There must be exactly one destination which accepts
 | ||
| 		 character ch.  See group_nodes_into_DFAstates.  */
 | ||
| 	      for (j = 0; (dests_ch[j][i] & mask) == 0; ++j)
 | ||
| 		;
 | ||
| 
 | ||
| 	      /* j-th destination accepts the word character ch.  */
 | ||
| 	      if (dfa->word_char[i] & mask)
 | ||
| 		trtable[ch] = dest_states_word[j];
 | ||
| 	      else
 | ||
| 		trtable[ch] = dest_states[j];
 | ||
| 	    }
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       /* We care about whether the following character is a word
 | ||
| 	 character, and we are in a multi-byte character set: discern
 | ||
| 	 by looking at the character code: build two 256-entry
 | ||
| 	 transition tables, one starting at trtable[0] and one
 | ||
| 	 starting at trtable[SBC_MAX].  */
 | ||
|       trtable = state->word_trtable =
 | ||
| 	(re_dfastate_t **) calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX);
 | ||
|       if (BE (trtable == NULL, 0))
 | ||
| 	goto out_free;
 | ||
| 
 | ||
|       /* For all characters ch...:  */
 | ||
|       for (i = 0; i < BITSET_WORDS; ++i)
 | ||
| 	for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1;
 | ||
| 	     elem;
 | ||
| 	     mask <<= 1, elem >>= 1, ++ch)
 | ||
| 	  if (BE (elem & 1, 0))
 | ||
| 	    {
 | ||
| 	      /* There must be exactly one destination which accepts
 | ||
| 		 character ch.  See group_nodes_into_DFAstates.  */
 | ||
| 	      for (j = 0; (dests_ch[j][i] & mask) == 0; ++j)
 | ||
| 		;
 | ||
| 
 | ||
| 	      /* j-th destination accepts the word character ch.  */
 | ||
| 	      trtable[ch] = dest_states[j];
 | ||
| 	      trtable[ch + SBC_MAX] = dest_states_word[j];
 | ||
| 	    }
 | ||
|     }
 | ||
| 
 | ||
|   /* new line */
 | ||
|   if (bitset_contain (acceptable, NEWLINE_CHAR))
 | ||
|     {
 | ||
|       /* The current state accepts newline character.  */
 | ||
|       for (j = 0; j < ndests; ++j)
 | ||
| 	if (bitset_contain (dests_ch[j], NEWLINE_CHAR))
 | ||
| 	  {
 | ||
| 	    /* k-th destination accepts newline character.  */
 | ||
| 	    trtable[NEWLINE_CHAR] = dest_states_nl[j];
 | ||
| 	    if (need_word_trtable)
 | ||
| 	      trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j];
 | ||
| 	    /* There must be only one destination which accepts
 | ||
| 	       newline.  See group_nodes_into_DFAstates.  */
 | ||
| 	    break;
 | ||
| 	  }
 | ||
|     }
 | ||
| 
 | ||
|   if (dest_states_malloced)
 | ||
|     free (dest_states);
 | ||
| 
 | ||
|   re_node_set_free (&follows);
 | ||
|   for (i = 0; i < ndests; ++i)
 | ||
|     re_node_set_free (dests_node + i);
 | ||
| 
 | ||
|   if (dests_node_malloced)
 | ||
|     free (dests_alloc);
 | ||
| 
 | ||
|   return 1;
 | ||
| }
 | ||
| 
 | ||
| /* Group all nodes belonging to STATE into several destinations.
 | ||
|    Then for all destinations, set the nodes belonging to the destination
 | ||
|    to DESTS_NODE[i] and set the characters accepted by the destination
 | ||
|    to DEST_CH[i].  This function return the number of destinations.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state,
 | ||
| 			    re_node_set *dests_node, bitset_t *dests_ch)
 | ||
| {
 | ||
|   reg_errcode_t err;
 | ||
|   int result;
 | ||
|   int i, j, k;
 | ||
|   int ndests; /* Number of the destinations from `state'.  */
 | ||
|   bitset_t accepts; /* Characters a node can accept.  */
 | ||
|   const re_node_set *cur_nodes = &state->nodes;
 | ||
|   bitset_empty (accepts);
 | ||
|   ndests = 0;
 | ||
| 
 | ||
|   /* For all the nodes belonging to `state',  */
 | ||
|   for (i = 0; i < cur_nodes->nelem; ++i)
 | ||
|     {
 | ||
|       re_token_t *node = &dfa->nodes[cur_nodes->elems[i]];
 | ||
|       re_token_type_t type = node->type;
 | ||
|       unsigned int constraint = node->constraint;
 | ||
| 
 | ||
|       /* Enumerate all single byte character this node can accept.  */
 | ||
|       if (type == CHARACTER)
 | ||
| 	bitset_set (accepts, node->opr.c);
 | ||
|       else if (type == SIMPLE_BRACKET)
 | ||
| 	{
 | ||
| 	  bitset_merge (accepts, node->opr.sbcset);
 | ||
| 	}
 | ||
|       else if (type == OP_PERIOD)
 | ||
| 	{
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| 	  if (dfa->mb_cur_max > 1)
 | ||
| 	    bitset_merge (accepts, dfa->sb_char);
 | ||
| 	  else
 | ||
| #endif
 | ||
| 	    bitset_set_all (accepts);
 | ||
| 	  if (!(dfa->syntax & RE_DOT_NEWLINE))
 | ||
| 	    bitset_clear (accepts, '\n');
 | ||
| 	  if (dfa->syntax & RE_DOT_NOT_NULL)
 | ||
| 	    bitset_clear (accepts, '\0');
 | ||
| 	}
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       else if (type == OP_UTF8_PERIOD)
 | ||
| 	{
 | ||
| 	  memset (accepts, '\xff', sizeof (bitset_t) / 2);
 | ||
| 	  if (!(dfa->syntax & RE_DOT_NEWLINE))
 | ||
| 	    bitset_clear (accepts, '\n');
 | ||
| 	  if (dfa->syntax & RE_DOT_NOT_NULL)
 | ||
| 	    bitset_clear (accepts, '\0');
 | ||
| 	}
 | ||
| #endif
 | ||
|       else
 | ||
| 	continue;
 | ||
| 
 | ||
|       /* Check the `accepts' and sift the characters which are not
 | ||
| 	 match it the context.  */
 | ||
|       if (constraint)
 | ||
| 	{
 | ||
| 	  if (constraint & NEXT_NEWLINE_CONSTRAINT)
 | ||
| 	    {
 | ||
| 	      bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR);
 | ||
| 	      bitset_empty (accepts);
 | ||
| 	      if (accepts_newline)
 | ||
| 		bitset_set (accepts, NEWLINE_CHAR);
 | ||
| 	      else
 | ||
| 		continue;
 | ||
| 	    }
 | ||
| 	  if (constraint & NEXT_ENDBUF_CONSTRAINT)
 | ||
| 	    {
 | ||
| 	      bitset_empty (accepts);
 | ||
| 	      continue;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  if (constraint & NEXT_WORD_CONSTRAINT)
 | ||
| 	    {
 | ||
| 	      bitset_word_t any_set = 0;
 | ||
| 	      if (type == CHARACTER && !node->word_char)
 | ||
| 		{
 | ||
| 		  bitset_empty (accepts);
 | ||
| 		  continue;
 | ||
| 		}
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| 	      if (dfa->mb_cur_max > 1)
 | ||
| 		for (j = 0; j < BITSET_WORDS; ++j)
 | ||
| 		  any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j]));
 | ||
| 	      else
 | ||
| #endif
 | ||
| 		for (j = 0; j < BITSET_WORDS; ++j)
 | ||
| 		  any_set |= (accepts[j] &= dfa->word_char[j]);
 | ||
| 	      if (!any_set)
 | ||
| 		continue;
 | ||
| 	    }
 | ||
| 	  if (constraint & NEXT_NOTWORD_CONSTRAINT)
 | ||
| 	    {
 | ||
| 	      bitset_word_t any_set = 0;
 | ||
| 	      if (type == CHARACTER && node->word_char)
 | ||
| 		{
 | ||
| 		  bitset_empty (accepts);
 | ||
| 		  continue;
 | ||
| 		}
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| 	      if (dfa->mb_cur_max > 1)
 | ||
| 		for (j = 0; j < BITSET_WORDS; ++j)
 | ||
| 		  any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j]));
 | ||
| 	      else
 | ||
| #endif
 | ||
| 		for (j = 0; j < BITSET_WORDS; ++j)
 | ||
| 		  any_set |= (accepts[j] &= ~dfa->word_char[j]);
 | ||
| 	      if (!any_set)
 | ||
| 		continue;
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       /* Then divide `accepts' into DFA states, or create a new
 | ||
| 	 state.  Above, we make sure that accepts is not empty.  */
 | ||
|       for (j = 0; j < ndests; ++j)
 | ||
| 	{
 | ||
| 	  bitset_t intersec; /* Intersection sets, see below.  */
 | ||
| 	  bitset_t remains;
 | ||
| 	  /* Flags, see below.  */
 | ||
| 	  bitset_word_t has_intersec, not_subset, not_consumed;
 | ||
| 
 | ||
| 	  /* Optimization, skip if this state doesn't accept the character.  */
 | ||
| 	  if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c))
 | ||
| 	    continue;
 | ||
| 
 | ||
| 	  /* Enumerate the intersection set of this state and `accepts'.  */
 | ||
| 	  has_intersec = 0;
 | ||
| 	  for (k = 0; k < BITSET_WORDS; ++k)
 | ||
| 	    has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k];
 | ||
| 	  /* And skip if the intersection set is empty.  */
 | ||
| 	  if (!has_intersec)
 | ||
| 	    continue;
 | ||
| 
 | ||
| 	  /* Then check if this state is a subset of `accepts'.  */
 | ||
| 	  not_subset = not_consumed = 0;
 | ||
| 	  for (k = 0; k < BITSET_WORDS; ++k)
 | ||
| 	    {
 | ||
| 	      not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k];
 | ||
| 	      not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k];
 | ||
| 	    }
 | ||
| 
 | ||
| 	  /* If this state isn't a subset of `accepts', create a
 | ||
| 	     new group state, which has the `remains'. */
 | ||
| 	  if (not_subset)
 | ||
| 	    {
 | ||
| 	      bitset_copy (dests_ch[ndests], remains);
 | ||
| 	      bitset_copy (dests_ch[j], intersec);
 | ||
| 	      err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]);
 | ||
| 	      if (BE (err != REG_NOERROR, 0))
 | ||
| 		goto error_return;
 | ||
| 	      ++ndests;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  /* Put the position in the current group. */
 | ||
| 	  result = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]);
 | ||
| 	  if (BE (result < 0, 0))
 | ||
| 	    goto error_return;
 | ||
| 
 | ||
| 	  /* If all characters are consumed, go to next node. */
 | ||
| 	  if (!not_consumed)
 | ||
| 	    break;
 | ||
| 	}
 | ||
|       /* Some characters remain, create a new group. */
 | ||
|       if (j == ndests)
 | ||
| 	{
 | ||
| 	  bitset_copy (dests_ch[ndests], accepts);
 | ||
| 	  err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    goto error_return;
 | ||
| 	  ++ndests;
 | ||
| 	  bitset_empty (accepts);
 | ||
| 	}
 | ||
|     }
 | ||
|   return ndests;
 | ||
|  error_return:
 | ||
|   for (j = 0; j < ndests; ++j)
 | ||
|     re_node_set_free (dests_node + j);
 | ||
|   return -1;
 | ||
| }
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| /* Check how many bytes the node `dfa->nodes[node_idx]' accepts.
 | ||
|    Return the number of the bytes the node accepts.
 | ||
|    STR_IDX is the current index of the input string.
 | ||
| 
 | ||
|    This function handles the nodes which can accept one character, or
 | ||
|    one collating element like '.', '[a-z]', opposite to the other nodes
 | ||
|    can only accept one byte.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| check_node_accept_bytes (const re_dfa_t *dfa, int node_idx,
 | ||
| 			 const re_string_t *input, int str_idx)
 | ||
| {
 | ||
|   const re_token_t *node = dfa->nodes + node_idx;
 | ||
|   int char_len, elem_len;
 | ||
|   int i;
 | ||
|   wint_t wc;
 | ||
| 
 | ||
|   if (BE (node->type == OP_UTF8_PERIOD, 0))
 | ||
|     {
 | ||
|       unsigned char c = re_string_byte_at (input, str_idx), d;
 | ||
|       if (BE (c < 0xc2, 1))
 | ||
| 	return 0;
 | ||
| 
 | ||
|       if (str_idx + 2 > input->len)
 | ||
| 	return 0;
 | ||
| 
 | ||
|       d = re_string_byte_at (input, str_idx + 1);
 | ||
|       if (c < 0xe0)
 | ||
| 	return (d < 0x80 || d > 0xbf) ? 0 : 2;
 | ||
|       else if (c < 0xf0)
 | ||
| 	{
 | ||
| 	  char_len = 3;
 | ||
| 	  if (c == 0xe0 && d < 0xa0)
 | ||
| 	    return 0;
 | ||
| 	}
 | ||
|       else if (c < 0xf8)
 | ||
| 	{
 | ||
| 	  char_len = 4;
 | ||
| 	  if (c == 0xf0 && d < 0x90)
 | ||
| 	    return 0;
 | ||
| 	}
 | ||
|       else if (c < 0xfc)
 | ||
| 	{
 | ||
| 	  char_len = 5;
 | ||
| 	  if (c == 0xf8 && d < 0x88)
 | ||
| 	    return 0;
 | ||
| 	}
 | ||
|       else if (c < 0xfe)
 | ||
| 	{
 | ||
| 	  char_len = 6;
 | ||
| 	  if (c == 0xfc && d < 0x84)
 | ||
| 	    return 0;
 | ||
| 	}
 | ||
|       else
 | ||
| 	return 0;
 | ||
| 
 | ||
|       if (str_idx + char_len > input->len)
 | ||
| 	return 0;
 | ||
| 
 | ||
|       for (i = 1; i < char_len; ++i)
 | ||
| 	{
 | ||
| 	  d = re_string_byte_at (input, str_idx + i);
 | ||
| 	  if (d < 0x80 || d > 0xbf)
 | ||
| 	    return 0;
 | ||
| 	}
 | ||
|       return char_len;
 | ||
|     }
 | ||
| 
 | ||
|   char_len = re_string_char_size_at (input, str_idx);
 | ||
|   if (node->type == OP_PERIOD)
 | ||
|     {
 | ||
|       if (char_len <= 1)
 | ||
| 	return 0;
 | ||
|       /* FIXME: I don't think this if is needed, as both '\n'
 | ||
| 	 and '\0' are char_len == 1.  */
 | ||
|       /* '.' accepts any one character except the following two cases.  */
 | ||
|       if ((!(dfa->syntax & RE_DOT_NEWLINE) &&
 | ||
| 	   re_string_byte_at (input, str_idx) == '\n') ||
 | ||
| 	  ((dfa->syntax & RE_DOT_NOT_NULL) &&
 | ||
| 	   re_string_byte_at (input, str_idx) == '\0'))
 | ||
| 	return 0;
 | ||
|       return char_len;
 | ||
|     }
 | ||
| 
 | ||
|   elem_len = re_string_elem_size_at (input, str_idx);
 | ||
|   wc = __btowc(*(input->mbs+str_idx));
 | ||
|   if (((elem_len <= 1 && char_len <= 1) || char_len == 0) && (wc != WEOF && wc < SBC_MAX))
 | ||
|     return 0;
 | ||
| 
 | ||
|   if (node->type == COMPLEX_BRACKET)
 | ||
|     {
 | ||
|       const re_charset_t *cset = node->opr.mbcset;
 | ||
| # ifdef _LIBC
 | ||
|       const unsigned char *pin
 | ||
| 	= ((const unsigned char *) re_string_get_buffer (input) + str_idx);
 | ||
|       int j;
 | ||
|       uint32_t nrules;
 | ||
| # endif /* _LIBC */
 | ||
|       int match_len = 0;
 | ||
|       wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars)
 | ||
| 		    ? re_string_wchar_at (input, str_idx) : 0);
 | ||
| 
 | ||
|       /* match with multibyte character?  */
 | ||
|       for (i = 0; i < cset->nmbchars; ++i)
 | ||
| 	if (wc == cset->mbchars[i])
 | ||
| 	  {
 | ||
| 	    match_len = char_len;
 | ||
| 	    goto check_node_accept_bytes_match;
 | ||
| 	  }
 | ||
|       /* match with character_class?  */
 | ||
|       for (i = 0; i < cset->nchar_classes; ++i)
 | ||
| 	{
 | ||
| 	  wctype_t wt = cset->char_classes[i];
 | ||
| 	  if (__iswctype (wc, wt))
 | ||
| 	    {
 | ||
| 	      match_len = char_len;
 | ||
| 	      goto check_node_accept_bytes_match;
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
| # ifdef _LIBC
 | ||
|       nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
 | ||
|       if (nrules != 0)
 | ||
| 	{
 | ||
| 	  unsigned int in_collseq = 0;
 | ||
| 	  const int32_t *table, *indirect;
 | ||
| 	  const unsigned char *weights, *extra;
 | ||
| 	  const char *collseqwc;
 | ||
| 	  /* This #include defines a local function!  */
 | ||
| #  include <locale/weight.h>
 | ||
| 
 | ||
| 	  /* match with collating_symbol?  */
 | ||
| 	  if (cset->ncoll_syms)
 | ||
| 	    extra = (const unsigned char *)
 | ||
| 	      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
 | ||
| 	  for (i = 0; i < cset->ncoll_syms; ++i)
 | ||
| 	    {
 | ||
| 	      const unsigned char *coll_sym = extra + cset->coll_syms[i];
 | ||
| 	      /* Compare the length of input collating element and
 | ||
| 		 the length of current collating element.  */
 | ||
| 	      if (*coll_sym != elem_len)
 | ||
| 		continue;
 | ||
| 	      /* Compare each bytes.  */
 | ||
| 	      for (j = 0; j < *coll_sym; j++)
 | ||
| 		if (pin[j] != coll_sym[1 + j])
 | ||
| 		  break;
 | ||
| 	      if (j == *coll_sym)
 | ||
| 		{
 | ||
| 		  /* Match if every bytes is equal.  */
 | ||
| 		  match_len = j;
 | ||
| 		  goto check_node_accept_bytes_match;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 
 | ||
| 	  if (cset->nranges)
 | ||
| 	    {
 | ||
| 	      if (elem_len <= char_len)
 | ||
| 		{
 | ||
| 		  collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC);
 | ||
| 		  in_collseq = __collseq_table_lookup (collseqwc, wc);
 | ||
| 		}
 | ||
| 	      else
 | ||
| 		in_collseq = find_collation_sequence_value (pin, elem_len);
 | ||
| 	    }
 | ||
| 	  /* match with range expression?  */
 | ||
| 	  for (i = 0; i < cset->nranges; ++i)
 | ||
| 	    if (cset->range_starts[i] <= in_collseq
 | ||
| 		&& in_collseq <= cset->range_ends[i])
 | ||
| 	      {
 | ||
| 		match_len = elem_len;
 | ||
| 		goto check_node_accept_bytes_match;
 | ||
| 	      }
 | ||
| 
 | ||
| 	  /* match with equivalence_class?  */
 | ||
| 	  if (cset->nequiv_classes)
 | ||
| 	    {
 | ||
| 	      const unsigned char *cp = pin;
 | ||
| 	      table = (const int32_t *)
 | ||
| 		_NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
 | ||
| 	      weights = (const unsigned char *)
 | ||
| 		_NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
 | ||
| 	      extra = (const unsigned char *)
 | ||
| 		_NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
 | ||
| 	      indirect = (const int32_t *)
 | ||
| 		_NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
 | ||
| 	      int32_t idx = findidx (&cp);
 | ||
| 	      if (idx > 0)
 | ||
| 		for (i = 0; i < cset->nequiv_classes; ++i)
 | ||
| 		  {
 | ||
| 		    int32_t equiv_class_idx = cset->equiv_classes[i];
 | ||
| 		    size_t weight_len = weights[idx & 0xffffff];
 | ||
| 		    if (weight_len == weights[equiv_class_idx & 0xffffff]
 | ||
| 			&& (idx >> 24) == (equiv_class_idx >> 24))
 | ||
| 		      {
 | ||
| 			int cnt = 0;
 | ||
| 
 | ||
| 			idx &= 0xffffff;
 | ||
| 			equiv_class_idx &= 0xffffff;
 | ||
| 
 | ||
| 			while (cnt <= weight_len
 | ||
| 			       && (weights[equiv_class_idx + 1 + cnt]
 | ||
| 				   == weights[idx + 1 + cnt]))
 | ||
| 			  ++cnt;
 | ||
| 			if (cnt > weight_len)
 | ||
| 			  {
 | ||
| 			    match_len = elem_len;
 | ||
| 			    goto check_node_accept_bytes_match;
 | ||
| 			  }
 | ||
| 		      }
 | ||
| 		  }
 | ||
| 	    }
 | ||
| 	}
 | ||
|       else
 | ||
| # endif /* _LIBC */
 | ||
| 	{
 | ||
| 	  /* match with range expression?  */
 | ||
| #if __GNUC__ >= 2
 | ||
| 	  wchar_t cmp_buf[] = {L'\0', L'\0', wc, L'\0', L'\0', L'\0'};
 | ||
| #else
 | ||
| 	  wchar_t cmp_buf[] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'};
 | ||
| 	  cmp_buf[2] = wc;
 | ||
| #endif
 | ||
| 	  for (i = 0; i < cset->nranges; ++i)
 | ||
| 	    {
 | ||
| 	      cmp_buf[0] = cset->range_starts[i];
 | ||
| 	      cmp_buf[4] = cset->range_ends[i];
 | ||
| 	      if (wcscoll (cmp_buf, cmp_buf + 2) <= 0
 | ||
| 		  && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0)
 | ||
| 		{
 | ||
| 		  match_len = char_len;
 | ||
| 		  goto check_node_accept_bytes_match;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	}
 | ||
|     check_node_accept_bytes_match:
 | ||
|       if (!cset->non_match)
 | ||
| 	return match_len;
 | ||
|       else
 | ||
| 	{
 | ||
| 	  if (match_len > 0)
 | ||
| 	    return 0;
 | ||
| 	  else
 | ||
| 	    return (elem_len > char_len) ? elem_len : char_len;
 | ||
| 	}
 | ||
|     }
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| # ifdef _LIBC
 | ||
| static unsigned int
 | ||
| internal_function
 | ||
| find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len)
 | ||
| {
 | ||
|   uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
 | ||
|   if (nrules == 0)
 | ||
|     {
 | ||
|       if (mbs_len == 1)
 | ||
| 	{
 | ||
| 	  /* No valid character.  Match it as a single byte character.  */
 | ||
| 	  const unsigned char *collseq = (const unsigned char *)
 | ||
| 	    _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB);
 | ||
| 	  return collseq[mbs[0]];
 | ||
| 	}
 | ||
|       return UINT_MAX;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       int32_t idx;
 | ||
|       const unsigned char *extra = (const unsigned char *)
 | ||
| 	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
 | ||
|       int32_t extrasize = (const unsigned char *)
 | ||
| 	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra;
 | ||
| 
 | ||
|       for (idx = 0; idx < extrasize;)
 | ||
| 	{
 | ||
| 	  int mbs_cnt, found = 0;
 | ||
| 	  int32_t elem_mbs_len;
 | ||
| 	  /* Skip the name of collating element name.  */
 | ||
| 	  idx = idx + extra[idx] + 1;
 | ||
| 	  elem_mbs_len = extra[idx++];
 | ||
| 	  if (mbs_len == elem_mbs_len)
 | ||
| 	    {
 | ||
| 	      for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt)
 | ||
| 		if (extra[idx + mbs_cnt] != mbs[mbs_cnt])
 | ||
| 		  break;
 | ||
| 	      if (mbs_cnt == elem_mbs_len)
 | ||
| 		/* Found the entry.  */
 | ||
| 		found = 1;
 | ||
| 	    }
 | ||
| 	  /* Skip the byte sequence of the collating element.  */
 | ||
| 	  idx += elem_mbs_len;
 | ||
| 	  /* Adjust for the alignment.  */
 | ||
| 	  idx = (idx + 3) & ~3;
 | ||
| 	  /* Skip the collation sequence value.  */
 | ||
| 	  idx += sizeof (uint32_t);
 | ||
| 	  /* Skip the wide char sequence of the collating element.  */
 | ||
| 	  idx = idx + sizeof (uint32_t) * (extra[idx] + 1);
 | ||
| 	  /* If we found the entry, return the sequence value.  */
 | ||
| 	  if (found)
 | ||
| 	    return *(uint32_t *) (extra + idx);
 | ||
| 	  /* Skip the collation sequence value.  */
 | ||
| 	  idx += sizeof (uint32_t);
 | ||
| 	}
 | ||
|       return UINT_MAX;
 | ||
|     }
 | ||
| }
 | ||
| # endif /* _LIBC */
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 
 | ||
| /* Check whether the node accepts the byte which is IDX-th
 | ||
|    byte of the INPUT.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| check_node_accept (const re_match_context_t *mctx, const re_token_t *node,
 | ||
| 		   int idx)
 | ||
| {
 | ||
|   unsigned char ch;
 | ||
|   ch = re_string_byte_at (&mctx->input, idx);
 | ||
|   switch (node->type)
 | ||
|     {
 | ||
|     case CHARACTER:
 | ||
|       if (node->opr.c != ch)
 | ||
| 	return 0;
 | ||
|       break;
 | ||
| 
 | ||
|     case SIMPLE_BRACKET:
 | ||
|       if (!bitset_contain (node->opr.sbcset, ch))
 | ||
| 	return 0;
 | ||
|       break;
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|     case OP_UTF8_PERIOD:
 | ||
|       if (ch >= 0x80)
 | ||
| 	return 0;
 | ||
|       /* FALLTHROUGH */
 | ||
| #endif
 | ||
|     case OP_PERIOD:
 | ||
|       if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE))
 | ||
| 	  || (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL)))
 | ||
| 	return 0;
 | ||
|       break;
 | ||
| 
 | ||
|     default:
 | ||
|       return 0;
 | ||
|     }
 | ||
| 
 | ||
|   if (node->constraint)
 | ||
|     {
 | ||
|       /* The node has constraints.  Check whether the current context
 | ||
| 	 satisfies the constraints.  */
 | ||
|       unsigned int context = re_string_context_at (&mctx->input, idx,
 | ||
| 						   mctx->eflags);
 | ||
|       if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
 | ||
| 	return 0;
 | ||
|     }
 | ||
| 
 | ||
|   return 1;
 | ||
| }
 | ||
| 
 | ||
| /* Extend the buffers, if the buffers have run out.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| extend_buffers (re_match_context_t *mctx)
 | ||
| {
 | ||
|   reg_errcode_t ret;
 | ||
|   re_string_t *pstr = &mctx->input;
 | ||
| 
 | ||
|   /* Avoid overflow.  */
 | ||
|   if (BE (INT_MAX / 2 / sizeof (re_dfastate_t *) <= pstr->bufs_len, 0))
 | ||
|     return REG_ESPACE;
 | ||
| 
 | ||
|   /* Double the lengthes of the buffers.  */
 | ||
|   ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2);
 | ||
|   if (BE (ret != REG_NOERROR, 0))
 | ||
|     return ret;
 | ||
| 
 | ||
|   if (mctx->state_log != NULL)
 | ||
|     {
 | ||
|       /* And double the length of state_log.  */
 | ||
|       /* XXX We have no indication of the size of this buffer.  If this
 | ||
| 	 allocation fail we have no indication that the state_log array
 | ||
| 	 does not have the right size.  */
 | ||
|       re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *,
 | ||
| 					      pstr->bufs_len + 1);
 | ||
|       if (BE (new_array == NULL, 0))
 | ||
| 	return REG_ESPACE;
 | ||
|       mctx->state_log = new_array;
 | ||
|     }
 | ||
| 
 | ||
|   /* Then reconstruct the buffers.  */
 | ||
|   if (pstr->icase)
 | ||
|     {
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       if (pstr->mb_cur_max > 1)
 | ||
| 	{
 | ||
| 	  ret = build_wcs_upper_buffer (pstr);
 | ||
| 	  if (BE (ret != REG_NOERROR, 0))
 | ||
| 	    return ret;
 | ||
| 	}
 | ||
|       else
 | ||
| #endif /* RE_ENABLE_I18N  */
 | ||
| 	build_upper_buffer (pstr);
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       if (pstr->mb_cur_max > 1)
 | ||
| 	build_wcs_buffer (pstr);
 | ||
|       else
 | ||
| #endif /* RE_ENABLE_I18N  */
 | ||
| 	{
 | ||
| 	  if (pstr->trans != NULL)
 | ||
| 	    re_string_translate_buffer (pstr);
 | ||
| 	}
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Functions for matching context.  */
 | ||
| 
 | ||
| /* Initialize MCTX.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| match_ctx_init (re_match_context_t *mctx, int eflags, int n)
 | ||
| {
 | ||
|   mctx->eflags = eflags;
 | ||
|   mctx->match_last = -1;
 | ||
|   if (n > 0)
 | ||
|     {
 | ||
|       mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n);
 | ||
|       mctx->sub_tops = re_malloc (re_sub_match_top_t *, n);
 | ||
|       if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0))
 | ||
| 	return REG_ESPACE;
 | ||
|     }
 | ||
|   /* Already zero-ed by the caller.
 | ||
|      else
 | ||
|        mctx->bkref_ents = NULL;
 | ||
|      mctx->nbkref_ents = 0;
 | ||
|      mctx->nsub_tops = 0;  */
 | ||
|   mctx->abkref_ents = n;
 | ||
|   mctx->max_mb_elem_len = 1;
 | ||
|   mctx->asub_tops = n;
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Clean the entries which depend on the current input in MCTX.
 | ||
|    This function must be invoked when the matcher changes the start index
 | ||
|    of the input, or changes the input string.  */
 | ||
| 
 | ||
| static void
 | ||
| internal_function
 | ||
| match_ctx_clean (re_match_context_t *mctx)
 | ||
| {
 | ||
|   int st_idx;
 | ||
|   for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx)
 | ||
|     {
 | ||
|       int sl_idx;
 | ||
|       re_sub_match_top_t *top = mctx->sub_tops[st_idx];
 | ||
|       for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx)
 | ||
| 	{
 | ||
| 	  re_sub_match_last_t *last = top->lasts[sl_idx];
 | ||
| 	  re_free (last->path.array);
 | ||
| 	  re_free (last);
 | ||
| 	}
 | ||
|       re_free (top->lasts);
 | ||
|       if (top->path)
 | ||
| 	{
 | ||
| 	  re_free (top->path->array);
 | ||
| 	  re_free (top->path);
 | ||
| 	}
 | ||
|       free (top);
 | ||
|     }
 | ||
| 
 | ||
|   mctx->nsub_tops = 0;
 | ||
|   mctx->nbkref_ents = 0;
 | ||
| }
 | ||
| 
 | ||
| /* Free all the memory associated with MCTX.  */
 | ||
| 
 | ||
| static void
 | ||
| internal_function
 | ||
| match_ctx_free (re_match_context_t *mctx)
 | ||
| {
 | ||
|   /* First, free all the memory associated with MCTX->SUB_TOPS.  */
 | ||
|   match_ctx_clean (mctx);
 | ||
|   re_free (mctx->sub_tops);
 | ||
|   re_free (mctx->bkref_ents);
 | ||
| }
 | ||
| 
 | ||
| /* Add a new backreference entry to MCTX.
 | ||
|    Note that we assume that caller never call this function with duplicate
 | ||
|    entry, and call with STR_IDX which isn't smaller than any existing entry.
 | ||
| */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| match_ctx_add_entry (re_match_context_t *mctx, int node, int str_idx, int from,
 | ||
| 		     int to)
 | ||
| {
 | ||
|   if (mctx->nbkref_ents >= mctx->abkref_ents)
 | ||
|     {
 | ||
|       struct re_backref_cache_entry* new_entry;
 | ||
|       new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry,
 | ||
| 			      mctx->abkref_ents * 2);
 | ||
|       if (BE (new_entry == NULL, 0))
 | ||
| 	{
 | ||
| 	  re_free (mctx->bkref_ents);
 | ||
| 	  return REG_ESPACE;
 | ||
| 	}
 | ||
|       mctx->bkref_ents = new_entry;
 | ||
|       memset (mctx->bkref_ents + mctx->nbkref_ents, '\0',
 | ||
| 	      sizeof (struct re_backref_cache_entry) * mctx->abkref_ents);
 | ||
|       mctx->abkref_ents *= 2;
 | ||
|     }
 | ||
|   if (mctx->nbkref_ents > 0
 | ||
|       && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx)
 | ||
|     mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1;
 | ||
| 
 | ||
|   mctx->bkref_ents[mctx->nbkref_ents].node = node;
 | ||
|   mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx;
 | ||
|   mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from;
 | ||
|   mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to;
 | ||
| 
 | ||
|   /* This is a cache that saves negative results of check_dst_limits_calc_pos.
 | ||
|      If bit N is clear, means that this entry won't epsilon-transition to
 | ||
|      an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression.  If
 | ||
|      it is set, check_dst_limits_calc_pos_1 will recurse and try to find one
 | ||
|      such node.
 | ||
| 
 | ||
|      A backreference does not epsilon-transition unless it is empty, so set
 | ||
|      to all zeros if FROM != TO.  */
 | ||
|   mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map
 | ||
|     = (from == to ? ~0 : 0);
 | ||
| 
 | ||
|   mctx->bkref_ents[mctx->nbkref_ents++].more = 0;
 | ||
|   if (mctx->max_mb_elem_len < to - from)
 | ||
|     mctx->max_mb_elem_len = to - from;
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Search for the first entry which has the same str_idx, or -1 if none is
 | ||
|    found.  Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| search_cur_bkref_entry (const re_match_context_t *mctx, int str_idx)
 | ||
| {
 | ||
|   int left, right, mid, last;
 | ||
|   last = right = mctx->nbkref_ents;
 | ||
|   for (left = 0; left < right;)
 | ||
|     {
 | ||
|       mid = (left + right) / 2;
 | ||
|       if (mctx->bkref_ents[mid].str_idx < str_idx)
 | ||
| 	left = mid + 1;
 | ||
|       else
 | ||
| 	right = mid;
 | ||
|     }
 | ||
|   if (left < last && mctx->bkref_ents[left].str_idx == str_idx)
 | ||
|     return left;
 | ||
|   else
 | ||
|     return -1;
 | ||
| }
 | ||
| 
 | ||
| /* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches
 | ||
|    at STR_IDX.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| match_ctx_add_subtop (re_match_context_t *mctx, int node, int str_idx)
 | ||
| {
 | ||
| #ifdef DEBUG
 | ||
|   assert (mctx->sub_tops != NULL);
 | ||
|   assert (mctx->asub_tops > 0);
 | ||
| #endif
 | ||
|   if (BE (mctx->nsub_tops == mctx->asub_tops, 0))
 | ||
|     {
 | ||
|       int new_asub_tops = mctx->asub_tops * 2;
 | ||
|       re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops,
 | ||
| 						   re_sub_match_top_t *,
 | ||
| 						   new_asub_tops);
 | ||
|       if (BE (new_array == NULL, 0))
 | ||
| 	return REG_ESPACE;
 | ||
|       mctx->sub_tops = new_array;
 | ||
|       mctx->asub_tops = new_asub_tops;
 | ||
|     }
 | ||
|   mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t));
 | ||
|   if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0))
 | ||
|     return REG_ESPACE;
 | ||
|   mctx->sub_tops[mctx->nsub_tops]->node = node;
 | ||
|   mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx;
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches
 | ||
|    at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP.  */
 | ||
| 
 | ||
| static re_sub_match_last_t *
 | ||
| internal_function
 | ||
| match_ctx_add_sublast (re_sub_match_top_t *subtop, int node, int str_idx)
 | ||
| {
 | ||
|   re_sub_match_last_t *new_entry;
 | ||
|   if (BE (subtop->nlasts == subtop->alasts, 0))
 | ||
|     {
 | ||
|       int new_alasts = 2 * subtop->alasts + 1;
 | ||
|       re_sub_match_last_t **new_array = re_realloc (subtop->lasts,
 | ||
| 						    re_sub_match_last_t *,
 | ||
| 						    new_alasts);
 | ||
|       if (BE (new_array == NULL, 0))
 | ||
| 	return NULL;
 | ||
|       subtop->lasts = new_array;
 | ||
|       subtop->alasts = new_alasts;
 | ||
|     }
 | ||
|   new_entry = calloc (1, sizeof (re_sub_match_last_t));
 | ||
|   if (BE (new_entry != NULL, 1))
 | ||
|     {
 | ||
|       subtop->lasts[subtop->nlasts] = new_entry;
 | ||
|       new_entry->node = node;
 | ||
|       new_entry->str_idx = str_idx;
 | ||
|       ++subtop->nlasts;
 | ||
|     }
 | ||
|   return new_entry;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| internal_function
 | ||
| sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts,
 | ||
| 	       re_dfastate_t **limited_sts, int last_node, int last_str_idx)
 | ||
| {
 | ||
|   sctx->sifted_states = sifted_sts;
 | ||
|   sctx->limited_states = limited_sts;
 | ||
|   sctx->last_node = last_node;
 | ||
|   sctx->last_str_idx = last_str_idx;
 | ||
|   re_node_set_init_empty (&sctx->limits);
 | ||
| }
 |