
The `hash_size()` function returns the number of bytes used by the hash function. Weirdly enough though, it returns a signed integer for its size even though the size obviously cannot ever be negative. The only case where it could be negative is if the function returned an error when asked for an unknown hash, but we assert(3p) instead. Adjust the type of `hash_size()` to be `uint32_t` and adapt all places that use signed integers for the hash size to follow suit. This also allows us to get rid of a couple asserts that we had which verified that the size was indeed positive, which further stresses the point that this refactoring makes sense. Signed-off-by: Patrick Steinhardt <ps@pks.im> Signed-off-by: Junio C Hamano <gitster@pobox.com>
287 lines
5.1 KiB
C
287 lines
5.1 KiB
C
/*
|
|
Copyright 2020 Google LLC
|
|
|
|
Use of this source code is governed by a BSD-style
|
|
license that can be found in the LICENSE file or at
|
|
https://developers.google.com/open-source/licenses/bsd
|
|
*/
|
|
|
|
#define REFTABLE_ALLOW_BANNED_ALLOCATORS
|
|
#include "basics.h"
|
|
#include "reftable-basics.h"
|
|
#include "reftable-error.h"
|
|
|
|
static void *(*reftable_malloc_ptr)(size_t sz);
|
|
static void *(*reftable_realloc_ptr)(void *, size_t);
|
|
static void (*reftable_free_ptr)(void *);
|
|
|
|
void *reftable_malloc(size_t sz)
|
|
{
|
|
if (!sz)
|
|
return NULL;
|
|
if (reftable_malloc_ptr)
|
|
return (*reftable_malloc_ptr)(sz);
|
|
return malloc(sz);
|
|
}
|
|
|
|
void *reftable_realloc(void *p, size_t sz)
|
|
{
|
|
if (!sz) {
|
|
reftable_free(p);
|
|
return NULL;
|
|
}
|
|
|
|
if (reftable_realloc_ptr)
|
|
return (*reftable_realloc_ptr)(p, sz);
|
|
return realloc(p, sz);
|
|
}
|
|
|
|
void reftable_free(void *p)
|
|
{
|
|
if (reftable_free_ptr)
|
|
reftable_free_ptr(p);
|
|
else
|
|
free(p);
|
|
}
|
|
|
|
void *reftable_calloc(size_t nelem, size_t elsize)
|
|
{
|
|
void *p;
|
|
|
|
if (nelem && elsize > SIZE_MAX / nelem)
|
|
return NULL;
|
|
|
|
p = reftable_malloc(nelem * elsize);
|
|
if (!p)
|
|
return NULL;
|
|
|
|
memset(p, 0, nelem * elsize);
|
|
return p;
|
|
}
|
|
|
|
char *reftable_strdup(const char *str)
|
|
{
|
|
size_t len = strlen(str);
|
|
char *result = reftable_malloc(len + 1);
|
|
if (!result)
|
|
return NULL;
|
|
memcpy(result, str, len + 1);
|
|
return result;
|
|
}
|
|
|
|
void reftable_set_alloc(void *(*malloc)(size_t),
|
|
void *(*realloc)(void *, size_t), void (*free)(void *))
|
|
{
|
|
reftable_malloc_ptr = malloc;
|
|
reftable_realloc_ptr = realloc;
|
|
reftable_free_ptr = free;
|
|
}
|
|
|
|
void reftable_buf_init(struct reftable_buf *buf)
|
|
{
|
|
struct reftable_buf empty = REFTABLE_BUF_INIT;
|
|
*buf = empty;
|
|
}
|
|
|
|
void reftable_buf_release(struct reftable_buf *buf)
|
|
{
|
|
reftable_free(buf->buf);
|
|
reftable_buf_init(buf);
|
|
}
|
|
|
|
void reftable_buf_reset(struct reftable_buf *buf)
|
|
{
|
|
if (buf->alloc) {
|
|
buf->len = 0;
|
|
buf->buf[0] = '\0';
|
|
}
|
|
}
|
|
|
|
int reftable_buf_setlen(struct reftable_buf *buf, size_t len)
|
|
{
|
|
if (len > buf->len)
|
|
return -1;
|
|
if (len == buf->len)
|
|
return 0;
|
|
buf->buf[len] = '\0';
|
|
buf->len = len;
|
|
return 0;
|
|
}
|
|
|
|
int reftable_buf_cmp(const struct reftable_buf *a, const struct reftable_buf *b)
|
|
{
|
|
size_t len = a->len < b->len ? a->len : b->len;
|
|
if (len) {
|
|
int cmp = memcmp(a->buf, b->buf, len);
|
|
if (cmp)
|
|
return cmp;
|
|
}
|
|
return a->len < b->len ? -1 : a->len != b->len;
|
|
}
|
|
|
|
int reftable_buf_add(struct reftable_buf *buf, const void *data, size_t len)
|
|
{
|
|
size_t newlen = buf->len + len;
|
|
|
|
if (newlen + 1 > buf->alloc) {
|
|
if (REFTABLE_ALLOC_GROW(buf->buf, newlen + 1, buf->alloc))
|
|
return REFTABLE_OUT_OF_MEMORY_ERROR;
|
|
}
|
|
|
|
memcpy(buf->buf + buf->len, data, len);
|
|
buf->buf[newlen] = '\0';
|
|
buf->len = newlen;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int reftable_buf_addstr(struct reftable_buf *buf, const char *s)
|
|
{
|
|
return reftable_buf_add(buf, s, strlen(s));
|
|
}
|
|
|
|
char *reftable_buf_detach(struct reftable_buf *buf)
|
|
{
|
|
char *result = buf->buf;
|
|
reftable_buf_init(buf);
|
|
return result;
|
|
}
|
|
|
|
void put_be24(uint8_t *out, uint32_t i)
|
|
{
|
|
out[0] = (uint8_t)((i >> 16) & 0xff);
|
|
out[1] = (uint8_t)((i >> 8) & 0xff);
|
|
out[2] = (uint8_t)(i & 0xff);
|
|
}
|
|
|
|
uint32_t get_be24(uint8_t *in)
|
|
{
|
|
return (uint32_t)(in[0]) << 16 | (uint32_t)(in[1]) << 8 |
|
|
(uint32_t)(in[2]);
|
|
}
|
|
|
|
void put_be16(uint8_t *out, uint16_t i)
|
|
{
|
|
out[0] = (uint8_t)((i >> 8) & 0xff);
|
|
out[1] = (uint8_t)(i & 0xff);
|
|
}
|
|
|
|
size_t binsearch(size_t sz, int (*f)(size_t k, void *args), void *args)
|
|
{
|
|
size_t lo = 0;
|
|
size_t hi = sz;
|
|
|
|
/* Invariants:
|
|
*
|
|
* (hi == sz) || f(hi) == true
|
|
* (lo == 0 && f(0) == true) || fi(lo) == false
|
|
*/
|
|
while (hi - lo > 1) {
|
|
size_t mid = lo + (hi - lo) / 2;
|
|
int ret = f(mid, args);
|
|
if (ret < 0)
|
|
return sz;
|
|
|
|
if (ret > 0)
|
|
hi = mid;
|
|
else
|
|
lo = mid;
|
|
}
|
|
|
|
if (lo)
|
|
return hi;
|
|
|
|
return f(0, args) ? 0 : 1;
|
|
}
|
|
|
|
void free_names(char **a)
|
|
{
|
|
char **p;
|
|
if (!a) {
|
|
return;
|
|
}
|
|
for (p = a; *p; p++) {
|
|
reftable_free(*p);
|
|
}
|
|
reftable_free(a);
|
|
}
|
|
|
|
size_t names_length(const char **names)
|
|
{
|
|
const char **p = names;
|
|
while (*p)
|
|
p++;
|
|
return p - names;
|
|
}
|
|
|
|
char **parse_names(char *buf, int size)
|
|
{
|
|
char **names = NULL;
|
|
size_t names_cap = 0;
|
|
size_t names_len = 0;
|
|
char *p = buf;
|
|
char *end = buf + size;
|
|
|
|
while (p < end) {
|
|
char *next = strchr(p, '\n');
|
|
if (next && next < end) {
|
|
*next = 0;
|
|
} else {
|
|
next = end;
|
|
}
|
|
if (p < next) {
|
|
if (REFTABLE_ALLOC_GROW(names, names_len + 1,
|
|
names_cap))
|
|
goto err;
|
|
|
|
names[names_len] = reftable_strdup(p);
|
|
if (!names[names_len++])
|
|
goto err;
|
|
}
|
|
p = next + 1;
|
|
}
|
|
|
|
if (REFTABLE_ALLOC_GROW(names, names_len + 1, names_cap))
|
|
goto err;
|
|
names[names_len] = NULL;
|
|
|
|
return names;
|
|
|
|
err:
|
|
for (size_t i = 0; i < names_len; i++)
|
|
reftable_free(names[i]);
|
|
reftable_free(names);
|
|
return NULL;
|
|
}
|
|
|
|
int names_equal(const char **a, const char **b)
|
|
{
|
|
size_t i = 0;
|
|
for (; a[i] && b[i]; i++)
|
|
if (strcmp(a[i], b[i]))
|
|
return 0;
|
|
return a[i] == b[i];
|
|
}
|
|
|
|
size_t common_prefix_size(struct reftable_buf *a, struct reftable_buf *b)
|
|
{
|
|
size_t p = 0;
|
|
for (; p < a->len && p < b->len; p++)
|
|
if (a->buf[p] != b->buf[p])
|
|
break;
|
|
return p;
|
|
}
|
|
|
|
uint32_t hash_size(enum reftable_hash id)
|
|
{
|
|
if (!id)
|
|
return REFTABLE_HASH_SIZE_SHA1;
|
|
switch (id) {
|
|
case REFTABLE_HASH_SHA1:
|
|
return REFTABLE_HASH_SIZE_SHA1;
|
|
case REFTABLE_HASH_SHA256:
|
|
return REFTABLE_HASH_SIZE_SHA256;
|
|
}
|
|
abort();
|
|
}
|