 885b797a4a
			
		
	
	885b797a4a
	
	
	
		
			
			Detected by "gcc -std=iso9899:1990 ...". This patch applies against "maint". Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu> Signed-off-by: Junio C Hamano <gitster@pobox.com>
		
			
				
	
	
		
			1299 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1299 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "cache.h"
 | |
| #include "notes.h"
 | |
| #include "blob.h"
 | |
| #include "tree.h"
 | |
| #include "utf8.h"
 | |
| #include "strbuf.h"
 | |
| #include "tree-walk.h"
 | |
| #include "string-list.h"
 | |
| #include "refs.h"
 | |
| 
 | |
| /*
 | |
|  * Use a non-balancing simple 16-tree structure with struct int_node as
 | |
|  * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
 | |
|  * 16-array of pointers to its children.
 | |
|  * The bottom 2 bits of each pointer is used to identify the pointer type
 | |
|  * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
 | |
|  * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
 | |
|  * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
 | |
|  * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
 | |
|  *
 | |
|  * The root node is a statically allocated struct int_node.
 | |
|  */
 | |
| struct int_node {
 | |
| 	void *a[16];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Leaf nodes come in two variants, note entries and subtree entries,
 | |
|  * distinguished by the LSb of the leaf node pointer (see above).
 | |
|  * As a note entry, the key is the SHA1 of the referenced object, and the
 | |
|  * value is the SHA1 of the note object.
 | |
|  * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
 | |
|  * referenced object, using the last byte of the key to store the length of
 | |
|  * the prefix. The value is the SHA1 of the tree object containing the notes
 | |
|  * subtree.
 | |
|  */
 | |
| struct leaf_node {
 | |
| 	unsigned char key_sha1[20];
 | |
| 	unsigned char val_sha1[20];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * A notes tree may contain entries that are not notes, and that do not follow
 | |
|  * the naming conventions of notes. There are typically none/few of these, but
 | |
|  * we still need to keep track of them. Keep a simple linked list sorted alpha-
 | |
|  * betically on the non-note path. The list is populated when parsing tree
 | |
|  * objects in load_subtree(), and the non-notes are correctly written back into
 | |
|  * the tree objects produced by write_notes_tree().
 | |
|  */
 | |
| struct non_note {
 | |
| 	struct non_note *next; /* grounded (last->next == NULL) */
 | |
| 	char *path;
 | |
| 	unsigned int mode;
 | |
| 	unsigned char sha1[20];
 | |
| };
 | |
| 
 | |
| #define PTR_TYPE_NULL     0
 | |
| #define PTR_TYPE_INTERNAL 1
 | |
| #define PTR_TYPE_NOTE     2
 | |
| #define PTR_TYPE_SUBTREE  3
 | |
| 
 | |
| #define GET_PTR_TYPE(ptr)       ((uintptr_t) (ptr) & 3)
 | |
| #define CLR_PTR_TYPE(ptr)       ((void *) ((uintptr_t) (ptr) & ~3))
 | |
| #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
 | |
| 
 | |
| #define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
 | |
| 
 | |
| #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
 | |
| 	(memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
 | |
| 
 | |
| struct notes_tree default_notes_tree;
 | |
| 
 | |
| static struct string_list display_notes_refs;
 | |
| static struct notes_tree **display_notes_trees;
 | |
| 
 | |
| static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
 | |
| 		struct int_node *node, unsigned int n);
 | |
| 
 | |
| /*
 | |
|  * Search the tree until the appropriate location for the given key is found:
 | |
|  * 1. Start at the root node, with n = 0
 | |
|  * 2. If a[0] at the current level is a matching subtree entry, unpack that
 | |
|  *    subtree entry and remove it; restart search at the current level.
 | |
|  * 3. Use the nth nibble of the key as an index into a:
 | |
|  *    - If a[n] is an int_node, recurse from #2 into that node and increment n
 | |
|  *    - If a matching subtree entry, unpack that subtree entry (and remove it);
 | |
|  *      restart search at the current level.
 | |
|  *    - Otherwise, we have found one of the following:
 | |
|  *      - a subtree entry which does not match the key
 | |
|  *      - a note entry which may or may not match the key
 | |
|  *      - an unused leaf node (NULL)
 | |
|  *      In any case, set *tree and *n, and return pointer to the tree location.
 | |
|  */
 | |
| static void **note_tree_search(struct notes_tree *t, struct int_node **tree,
 | |
| 		unsigned char *n, const unsigned char *key_sha1)
 | |
| {
 | |
| 	struct leaf_node *l;
 | |
| 	unsigned char i;
 | |
| 	void *p = (*tree)->a[0];
 | |
| 
 | |
| 	if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
 | |
| 		l = (struct leaf_node *) CLR_PTR_TYPE(p);
 | |
| 		if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
 | |
| 			/* unpack tree and resume search */
 | |
| 			(*tree)->a[0] = NULL;
 | |
| 			load_subtree(t, l, *tree, *n);
 | |
| 			free(l);
 | |
| 			return note_tree_search(t, tree, n, key_sha1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	i = GET_NIBBLE(*n, key_sha1);
 | |
| 	p = (*tree)->a[i];
 | |
| 	switch (GET_PTR_TYPE(p)) {
 | |
| 	case PTR_TYPE_INTERNAL:
 | |
| 		*tree = CLR_PTR_TYPE(p);
 | |
| 		(*n)++;
 | |
| 		return note_tree_search(t, tree, n, key_sha1);
 | |
| 	case PTR_TYPE_SUBTREE:
 | |
| 		l = (struct leaf_node *) CLR_PTR_TYPE(p);
 | |
| 		if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
 | |
| 			/* unpack tree and resume search */
 | |
| 			(*tree)->a[i] = NULL;
 | |
| 			load_subtree(t, l, *tree, *n);
 | |
| 			free(l);
 | |
| 			return note_tree_search(t, tree, n, key_sha1);
 | |
| 		}
 | |
| 		/* fall through */
 | |
| 	default:
 | |
| 		return &((*tree)->a[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To find a leaf_node:
 | |
|  * Search to the tree location appropriate for the given key:
 | |
|  * If a note entry with matching key, return the note entry, else return NULL.
 | |
|  */
 | |
| static struct leaf_node *note_tree_find(struct notes_tree *t,
 | |
| 		struct int_node *tree, unsigned char n,
 | |
| 		const unsigned char *key_sha1)
 | |
| {
 | |
| 	void **p = note_tree_search(t, &tree, &n, key_sha1);
 | |
| 	if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
 | |
| 		struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 | |
| 		if (!hashcmp(key_sha1, l->key_sha1))
 | |
| 			return l;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * How to consolidate an int_node:
 | |
|  * If there are > 1 non-NULL entries, give up and return non-zero.
 | |
|  * Otherwise replace the int_node at the given index in the given parent node
 | |
|  * with the only entry (or a NULL entry if no entries) from the given tree,
 | |
|  * and return 0.
 | |
|  */
 | |
| static int note_tree_consolidate(struct int_node *tree,
 | |
| 	struct int_node *parent, unsigned char index)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	void *p = NULL;
 | |
| 
 | |
| 	assert(tree && parent);
 | |
| 	assert(CLR_PTR_TYPE(parent->a[index]) == tree);
 | |
| 
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
 | |
| 			if (p) /* more than one entry */
 | |
| 				return -2;
 | |
| 			p = tree->a[i];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* replace tree with p in parent[index] */
 | |
| 	parent->a[index] = p;
 | |
| 	free(tree);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To remove a leaf_node:
 | |
|  * Search to the tree location appropriate for the given leaf_node's key:
 | |
|  * - If location does not hold a matching entry, abort and do nothing.
 | |
|  * - Copy the matching entry's value into the given entry.
 | |
|  * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
 | |
|  * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
 | |
|  */
 | |
| static void note_tree_remove(struct notes_tree *t,
 | |
| 		struct int_node *tree, unsigned char n,
 | |
| 		struct leaf_node *entry)
 | |
| {
 | |
| 	struct leaf_node *l;
 | |
| 	struct int_node *parent_stack[20];
 | |
| 	unsigned char i, j;
 | |
| 	void **p = note_tree_search(t, &tree, &n, entry->key_sha1);
 | |
| 
 | |
| 	assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
 | |
| 	if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
 | |
| 		return; /* type mismatch, nothing to remove */
 | |
| 	l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 | |
| 	if (hashcmp(l->key_sha1, entry->key_sha1))
 | |
| 		return; /* key mismatch, nothing to remove */
 | |
| 
 | |
| 	/* we have found a matching entry */
 | |
| 	hashcpy(entry->val_sha1, l->val_sha1);
 | |
| 	free(l);
 | |
| 	*p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
 | |
| 
 | |
| 	/* consolidate this tree level, and parent levels, if possible */
 | |
| 	if (!n)
 | |
| 		return; /* cannot consolidate top level */
 | |
| 	/* first, build stack of ancestors between root and current node */
 | |
| 	parent_stack[0] = t->root;
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		j = GET_NIBBLE(i, entry->key_sha1);
 | |
| 		parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
 | |
| 	}
 | |
| 	assert(i == n && parent_stack[i] == tree);
 | |
| 	/* next, unwind stack until note_tree_consolidate() is done */
 | |
| 	while (i > 0 &&
 | |
| 	       !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
 | |
| 				      GET_NIBBLE(i - 1, entry->key_sha1)))
 | |
| 		i--;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To insert a leaf_node:
 | |
|  * Search to the tree location appropriate for the given leaf_node's key:
 | |
|  * - If location is unused (NULL), store the tweaked pointer directly there
 | |
|  * - If location holds a note entry that matches the note-to-be-inserted, then
 | |
|  *   combine the two notes (by calling the given combine_notes function).
 | |
|  * - If location holds a note entry that matches the subtree-to-be-inserted,
 | |
|  *   then unpack the subtree-to-be-inserted into the location.
 | |
|  * - If location holds a matching subtree entry, unpack the subtree at that
 | |
|  *   location, and restart the insert operation from that level.
 | |
|  * - Else, create a new int_node, holding both the node-at-location and the
 | |
|  *   node-to-be-inserted, and store the new int_node into the location.
 | |
|  */
 | |
| static int note_tree_insert(struct notes_tree *t, struct int_node *tree,
 | |
| 		unsigned char n, struct leaf_node *entry, unsigned char type,
 | |
| 		combine_notes_fn combine_notes)
 | |
| {
 | |
| 	struct int_node *new_node;
 | |
| 	struct leaf_node *l;
 | |
| 	void **p = note_tree_search(t, &tree, &n, entry->key_sha1);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
 | |
| 	l = (struct leaf_node *) CLR_PTR_TYPE(*p);
 | |
| 	switch (GET_PTR_TYPE(*p)) {
 | |
| 	case PTR_TYPE_NULL:
 | |
| 		assert(!*p);
 | |
| 		if (is_null_sha1(entry->val_sha1))
 | |
| 			free(entry);
 | |
| 		else
 | |
| 			*p = SET_PTR_TYPE(entry, type);
 | |
| 		return 0;
 | |
| 	case PTR_TYPE_NOTE:
 | |
| 		switch (type) {
 | |
| 		case PTR_TYPE_NOTE:
 | |
| 			if (!hashcmp(l->key_sha1, entry->key_sha1)) {
 | |
| 				/* skip concatenation if l == entry */
 | |
| 				if (!hashcmp(l->val_sha1, entry->val_sha1))
 | |
| 					return 0;
 | |
| 
 | |
| 				ret = combine_notes(l->val_sha1,
 | |
| 						    entry->val_sha1);
 | |
| 				if (!ret && is_null_sha1(l->val_sha1))
 | |
| 					note_tree_remove(t, tree, n, entry);
 | |
| 				free(entry);
 | |
| 				return ret;
 | |
| 			}
 | |
| 			break;
 | |
| 		case PTR_TYPE_SUBTREE:
 | |
| 			if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
 | |
| 						    entry->key_sha1)) {
 | |
| 				/* unpack 'entry' */
 | |
| 				load_subtree(t, entry, tree, n);
 | |
| 				free(entry);
 | |
| 				return 0;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case PTR_TYPE_SUBTREE:
 | |
| 		if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
 | |
| 			/* unpack 'l' and restart insert */
 | |
| 			*p = NULL;
 | |
| 			load_subtree(t, l, tree, n);
 | |
| 			free(l);
 | |
| 			return note_tree_insert(t, tree, n, entry, type,
 | |
| 						combine_notes);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* non-matching leaf_node */
 | |
| 	assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
 | |
| 	       GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
 | |
| 	if (is_null_sha1(entry->val_sha1)) { /* skip insertion of empty note */
 | |
| 		free(entry);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
 | |
| 	ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p),
 | |
| 			       combine_notes);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	*p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
 | |
| 	return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes);
 | |
| }
 | |
| 
 | |
| /* Free the entire notes data contained in the given tree */
 | |
| static void note_tree_free(struct int_node *tree)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		void *p = tree->a[i];
 | |
| 		switch (GET_PTR_TYPE(p)) {
 | |
| 		case PTR_TYPE_INTERNAL:
 | |
| 			note_tree_free(CLR_PTR_TYPE(p));
 | |
| 			/* fall through */
 | |
| 		case PTR_TYPE_NOTE:
 | |
| 		case PTR_TYPE_SUBTREE:
 | |
| 			free(CLR_PTR_TYPE(p));
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
 | |
|  * - hex      - Partial SHA1 segment in ASCII hex format
 | |
|  * - hex_len  - Length of above segment. Must be multiple of 2 between 0 and 40
 | |
|  * - sha1     - Partial SHA1 value is written here
 | |
|  * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
 | |
|  * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
 | |
|  * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
 | |
|  * Pads sha1 with NULs up to sha1_len (not included in returned length).
 | |
|  */
 | |
| static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
 | |
| 		unsigned char *sha1, unsigned int sha1_len)
 | |
| {
 | |
| 	unsigned int i, len = hex_len >> 1;
 | |
| 	if (hex_len % 2 != 0 || len > sha1_len)
 | |
| 		return -1;
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
 | |
| 		if (val & ~0xff)
 | |
| 			return -1;
 | |
| 		*sha1++ = val;
 | |
| 		hex += 2;
 | |
| 	}
 | |
| 	for (; i < sha1_len; i++)
 | |
| 		*sha1++ = 0;
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static int non_note_cmp(const struct non_note *a, const struct non_note *b)
 | |
| {
 | |
| 	return strcmp(a->path, b->path);
 | |
| }
 | |
| 
 | |
| static void add_non_note(struct notes_tree *t, const char *path,
 | |
| 		unsigned int mode, const unsigned char *sha1)
 | |
| {
 | |
| 	struct non_note *p = t->prev_non_note, *n;
 | |
| 	n = (struct non_note *) xmalloc(sizeof(struct non_note));
 | |
| 	n->next = NULL;
 | |
| 	n->path = xstrdup(path);
 | |
| 	n->mode = mode;
 | |
| 	hashcpy(n->sha1, sha1);
 | |
| 	t->prev_non_note = n;
 | |
| 
 | |
| 	if (!t->first_non_note) {
 | |
| 		t->first_non_note = n;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (non_note_cmp(p, n) < 0)
 | |
| 		; /* do nothing  */
 | |
| 	else if (non_note_cmp(t->first_non_note, n) <= 0)
 | |
| 		p = t->first_non_note;
 | |
| 	else {
 | |
| 		/* n sorts before t->first_non_note */
 | |
| 		n->next = t->first_non_note;
 | |
| 		t->first_non_note = n;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* n sorts equal or after p */
 | |
| 	while (p->next && non_note_cmp(p->next, n) <= 0)
 | |
| 		p = p->next;
 | |
| 
 | |
| 	if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */
 | |
| 		assert(strcmp(p->path, n->path) == 0);
 | |
| 		p->mode = n->mode;
 | |
| 		hashcpy(p->sha1, n->sha1);
 | |
| 		free(n);
 | |
| 		t->prev_non_note = p;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* n sorts between p and p->next */
 | |
| 	n->next = p->next;
 | |
| 	p->next = n;
 | |
| }
 | |
| 
 | |
| static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
 | |
| 		struct int_node *node, unsigned int n)
 | |
| {
 | |
| 	unsigned char object_sha1[20];
 | |
| 	unsigned int prefix_len;
 | |
| 	void *buf;
 | |
| 	struct tree_desc desc;
 | |
| 	struct name_entry entry;
 | |
| 	int len, path_len;
 | |
| 	unsigned char type;
 | |
| 	struct leaf_node *l;
 | |
| 
 | |
| 	buf = fill_tree_descriptor(&desc, subtree->val_sha1);
 | |
| 	if (!buf)
 | |
| 		die("Could not read %s for notes-index",
 | |
| 		     sha1_to_hex(subtree->val_sha1));
 | |
| 
 | |
| 	prefix_len = subtree->key_sha1[19];
 | |
| 	assert(prefix_len * 2 >= n);
 | |
| 	memcpy(object_sha1, subtree->key_sha1, prefix_len);
 | |
| 	while (tree_entry(&desc, &entry)) {
 | |
| 		path_len = strlen(entry.path);
 | |
| 		len = get_sha1_hex_segment(entry.path, path_len,
 | |
| 				object_sha1 + prefix_len, 20 - prefix_len);
 | |
| 		if (len < 0)
 | |
| 			goto handle_non_note; /* entry.path is not a SHA1 */
 | |
| 		len += prefix_len;
 | |
| 
 | |
| 		/*
 | |
| 		 * If object SHA1 is complete (len == 20), assume note object
 | |
| 		 * If object SHA1 is incomplete (len < 20), and current
 | |
| 		 * component consists of 2 hex chars, assume note subtree
 | |
| 		 */
 | |
| 		if (len <= 20) {
 | |
| 			type = PTR_TYPE_NOTE;
 | |
| 			l = (struct leaf_node *)
 | |
| 				xcalloc(sizeof(struct leaf_node), 1);
 | |
| 			hashcpy(l->key_sha1, object_sha1);
 | |
| 			hashcpy(l->val_sha1, entry.sha1);
 | |
| 			if (len < 20) {
 | |
| 				if (!S_ISDIR(entry.mode) || path_len != 2)
 | |
| 					goto handle_non_note; /* not subtree */
 | |
| 				l->key_sha1[19] = (unsigned char) len;
 | |
| 				type = PTR_TYPE_SUBTREE;
 | |
| 			}
 | |
| 			if (note_tree_insert(t, node, n, l, type,
 | |
| 					     combine_notes_concatenate))
 | |
| 				die("Failed to load %s %s into notes tree "
 | |
| 				    "from %s",
 | |
| 				    type == PTR_TYPE_NOTE ? "note" : "subtree",
 | |
| 				    sha1_to_hex(l->key_sha1), t->ref);
 | |
| 		}
 | |
| 		continue;
 | |
| 
 | |
| handle_non_note:
 | |
| 		/*
 | |
| 		 * Determine full path for this non-note entry:
 | |
| 		 * The filename is already found in entry.path, but the
 | |
| 		 * directory part of the path must be deduced from the subtree
 | |
| 		 * containing this entry. We assume here that the overall notes
 | |
| 		 * tree follows a strict byte-based progressive fanout
 | |
| 		 * structure (i.e. using 2/38, 2/2/36, etc. fanouts, and not
 | |
| 		 * e.g. 4/36 fanout). This means that if a non-note is found at
 | |
| 		 * path "dead/beef", the following code will register it as
 | |
| 		 * being found on "de/ad/beef".
 | |
| 		 * On the other hand, if you use such non-obvious non-note
 | |
| 		 * paths in the middle of a notes tree, you deserve what's
 | |
| 		 * coming to you ;). Note that for non-notes that are not
 | |
| 		 * SHA1-like at the top level, there will be no problems.
 | |
| 		 *
 | |
| 		 * To conclude, it is strongly advised to make sure non-notes
 | |
| 		 * have at least one non-hex character in the top-level path
 | |
| 		 * component.
 | |
| 		 */
 | |
| 		{
 | |
| 			char non_note_path[PATH_MAX];
 | |
| 			char *p = non_note_path;
 | |
| 			const char *q = sha1_to_hex(subtree->key_sha1);
 | |
| 			int i;
 | |
| 			for (i = 0; i < prefix_len; i++) {
 | |
| 				*p++ = *q++;
 | |
| 				*p++ = *q++;
 | |
| 				*p++ = '/';
 | |
| 			}
 | |
| 			strcpy(p, entry.path);
 | |
| 			add_non_note(t, non_note_path, entry.mode, entry.sha1);
 | |
| 		}
 | |
| 	}
 | |
| 	free(buf);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine optimal on-disk fanout for this part of the notes tree
 | |
|  *
 | |
|  * Given a (sub)tree and the level in the internal tree structure, determine
 | |
|  * whether or not the given existing fanout should be expanded for this
 | |
|  * (sub)tree.
 | |
|  *
 | |
|  * Values of the 'fanout' variable:
 | |
|  * - 0: No fanout (all notes are stored directly in the root notes tree)
 | |
|  * - 1: 2/38 fanout
 | |
|  * - 2: 2/2/36 fanout
 | |
|  * - 3: 2/2/2/34 fanout
 | |
|  * etc.
 | |
|  */
 | |
| static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
 | |
| 		unsigned char fanout)
 | |
| {
 | |
| 	/*
 | |
| 	 * The following is a simple heuristic that works well in practice:
 | |
| 	 * For each even-numbered 16-tree level (remember that each on-disk
 | |
| 	 * fanout level corresponds to _two_ 16-tree levels), peek at all 16
 | |
| 	 * entries at that tree level. If all of them are either int_nodes or
 | |
| 	 * subtree entries, then there are likely plenty of notes below this
 | |
| 	 * level, so we return an incremented fanout.
 | |
| 	 */
 | |
| 	unsigned int i;
 | |
| 	if ((n % 2) || (n > 2 * fanout))
 | |
| 		return fanout;
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		switch (GET_PTR_TYPE(tree->a[i])) {
 | |
| 		case PTR_TYPE_SUBTREE:
 | |
| 		case PTR_TYPE_INTERNAL:
 | |
| 			continue;
 | |
| 		default:
 | |
| 			return fanout;
 | |
| 		}
 | |
| 	}
 | |
| 	return fanout + 1;
 | |
| }
 | |
| 
 | |
| static void construct_path_with_fanout(const unsigned char *sha1,
 | |
| 		unsigned char fanout, char *path)
 | |
| {
 | |
| 	unsigned int i = 0, j = 0;
 | |
| 	const char *hex_sha1 = sha1_to_hex(sha1);
 | |
| 	assert(fanout < 20);
 | |
| 	while (fanout) {
 | |
| 		path[i++] = hex_sha1[j++];
 | |
| 		path[i++] = hex_sha1[j++];
 | |
| 		path[i++] = '/';
 | |
| 		fanout--;
 | |
| 	}
 | |
| 	strcpy(path + i, hex_sha1 + j);
 | |
| }
 | |
| 
 | |
| static int for_each_note_helper(struct notes_tree *t, struct int_node *tree,
 | |
| 		unsigned char n, unsigned char fanout, int flags,
 | |
| 		each_note_fn fn, void *cb_data)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	void *p;
 | |
| 	int ret = 0;
 | |
| 	struct leaf_node *l;
 | |
| 	static char path[40 + 19 + 1];  /* hex SHA1 + 19 * '/' + NUL */
 | |
| 
 | |
| 	fanout = determine_fanout(tree, n, fanout);
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| redo:
 | |
| 		p = tree->a[i];
 | |
| 		switch (GET_PTR_TYPE(p)) {
 | |
| 		case PTR_TYPE_INTERNAL:
 | |
| 			/* recurse into int_node */
 | |
| 			ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1,
 | |
| 				fanout, flags, fn, cb_data);
 | |
| 			break;
 | |
| 		case PTR_TYPE_SUBTREE:
 | |
| 			l = (struct leaf_node *) CLR_PTR_TYPE(p);
 | |
| 			/*
 | |
| 			 * Subtree entries in the note tree represent parts of
 | |
| 			 * the note tree that have not yet been explored. There
 | |
| 			 * is a direct relationship between subtree entries at
 | |
| 			 * level 'n' in the tree, and the 'fanout' variable:
 | |
| 			 * Subtree entries at level 'n <= 2 * fanout' should be
 | |
| 			 * preserved, since they correspond exactly to a fanout
 | |
| 			 * directory in the on-disk structure. However, subtree
 | |
| 			 * entries at level 'n > 2 * fanout' should NOT be
 | |
| 			 * preserved, but rather consolidated into the above
 | |
| 			 * notes tree level. We achieve this by unconditionally
 | |
| 			 * unpacking subtree entries that exist below the
 | |
| 			 * threshold level at 'n = 2 * fanout'.
 | |
| 			 */
 | |
| 			if (n <= 2 * fanout &&
 | |
| 			    flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
 | |
| 				/* invoke callback with subtree */
 | |
| 				unsigned int path_len =
 | |
| 					l->key_sha1[19] * 2 + fanout;
 | |
| 				assert(path_len < 40 + 19);
 | |
| 				construct_path_with_fanout(l->key_sha1, fanout,
 | |
| 							   path);
 | |
| 				/* Create trailing slash, if needed */
 | |
| 				if (path[path_len - 1] != '/')
 | |
| 					path[path_len++] = '/';
 | |
| 				path[path_len] = '\0';
 | |
| 				ret = fn(l->key_sha1, l->val_sha1, path,
 | |
| 					 cb_data);
 | |
| 			}
 | |
| 			if (n > fanout * 2 ||
 | |
| 			    !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
 | |
| 				/* unpack subtree and resume traversal */
 | |
| 				tree->a[i] = NULL;
 | |
| 				load_subtree(t, l, tree, n);
 | |
| 				free(l);
 | |
| 				goto redo;
 | |
| 			}
 | |
| 			break;
 | |
| 		case PTR_TYPE_NOTE:
 | |
| 			l = (struct leaf_node *) CLR_PTR_TYPE(p);
 | |
| 			construct_path_with_fanout(l->key_sha1, fanout, path);
 | |
| 			ret = fn(l->key_sha1, l->val_sha1, path, cb_data);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct tree_write_stack {
 | |
| 	struct tree_write_stack *next;
 | |
| 	struct strbuf buf;
 | |
| 	char path[2]; /* path to subtree in next, if any */
 | |
| };
 | |
| 
 | |
| static inline int matches_tree_write_stack(struct tree_write_stack *tws,
 | |
| 		const char *full_path)
 | |
| {
 | |
| 	return  full_path[0] == tws->path[0] &&
 | |
| 		full_path[1] == tws->path[1] &&
 | |
| 		full_path[2] == '/';
 | |
| }
 | |
| 
 | |
| static void write_tree_entry(struct strbuf *buf, unsigned int mode,
 | |
| 		const char *path, unsigned int path_len, const
 | |
| 		unsigned char *sha1)
 | |
| {
 | |
| 	strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0');
 | |
| 	strbuf_add(buf, sha1, 20);
 | |
| }
 | |
| 
 | |
| static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
 | |
| 		const char *path)
 | |
| {
 | |
| 	struct tree_write_stack *n;
 | |
| 	assert(!tws->next);
 | |
| 	assert(tws->path[0] == '\0' && tws->path[1] == '\0');
 | |
| 	n = (struct tree_write_stack *)
 | |
| 		xmalloc(sizeof(struct tree_write_stack));
 | |
| 	n->next = NULL;
 | |
| 	strbuf_init(&n->buf, 256 * (32 + 40)); /* assume 256 entries per tree */
 | |
| 	n->path[0] = n->path[1] = '\0';
 | |
| 	tws->next = n;
 | |
| 	tws->path[0] = path[0];
 | |
| 	tws->path[1] = path[1];
 | |
| }
 | |
| 
 | |
| static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct tree_write_stack *n = tws->next;
 | |
| 	unsigned char s[20];
 | |
| 	if (n) {
 | |
| 		ret = tree_write_stack_finish_subtree(n);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		strbuf_release(&n->buf);
 | |
| 		free(n);
 | |
| 		tws->next = NULL;
 | |
| 		write_tree_entry(&tws->buf, 040000, tws->path, 2, s);
 | |
| 		tws->path[0] = tws->path[1] = '\0';
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int write_each_note_helper(struct tree_write_stack *tws,
 | |
| 		const char *path, unsigned int mode,
 | |
| 		const unsigned char *sha1)
 | |
| {
 | |
| 	size_t path_len = strlen(path);
 | |
| 	unsigned int n = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Determine common part of tree write stack */
 | |
| 	while (tws && 3 * n < path_len &&
 | |
| 	       matches_tree_write_stack(tws, path + 3 * n)) {
 | |
| 		n++;
 | |
| 		tws = tws->next;
 | |
| 	}
 | |
| 
 | |
| 	/* tws point to last matching tree_write_stack entry */
 | |
| 	ret = tree_write_stack_finish_subtree(tws);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Start subtrees needed to satisfy path */
 | |
| 	while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
 | |
| 		tree_write_stack_init_subtree(tws, path + 3 * n);
 | |
| 		n++;
 | |
| 		tws = tws->next;
 | |
| 	}
 | |
| 
 | |
| 	/* There should be no more directory components in the given path */
 | |
| 	assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
 | |
| 
 | |
| 	/* Finally add given entry to the current tree object */
 | |
| 	write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
 | |
| 			 sha1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct write_each_note_data {
 | |
| 	struct tree_write_stack *root;
 | |
| 	struct non_note *next_non_note;
 | |
| };
 | |
| 
 | |
| static int write_each_non_note_until(const char *note_path,
 | |
| 		struct write_each_note_data *d)
 | |
| {
 | |
| 	struct non_note *n = d->next_non_note;
 | |
| 	int cmp = 0, ret;
 | |
| 	while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) {
 | |
| 		if (note_path && cmp == 0)
 | |
| 			; /* do nothing, prefer note to non-note */
 | |
| 		else {
 | |
| 			ret = write_each_note_helper(d->root, n->path, n->mode,
 | |
| 						     n->sha1);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		}
 | |
| 		n = n->next;
 | |
| 	}
 | |
| 	d->next_non_note = n;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int write_each_note(const unsigned char *object_sha1,
 | |
| 		const unsigned char *note_sha1, char *note_path,
 | |
| 		void *cb_data)
 | |
| {
 | |
| 	struct write_each_note_data *d =
 | |
| 		(struct write_each_note_data *) cb_data;
 | |
| 	size_t note_path_len = strlen(note_path);
 | |
| 	unsigned int mode = 0100644;
 | |
| 
 | |
| 	if (note_path[note_path_len - 1] == '/') {
 | |
| 		/* subtree entry */
 | |
| 		note_path_len--;
 | |
| 		note_path[note_path_len] = '\0';
 | |
| 		mode = 040000;
 | |
| 	}
 | |
| 	assert(note_path_len <= 40 + 19);
 | |
| 
 | |
| 	/* Weave non-note entries into note entries */
 | |
| 	return  write_each_non_note_until(note_path, d) ||
 | |
| 		write_each_note_helper(d->root, note_path, mode, note_sha1);
 | |
| }
 | |
| 
 | |
| struct note_delete_list {
 | |
| 	struct note_delete_list *next;
 | |
| 	const unsigned char *sha1;
 | |
| };
 | |
| 
 | |
| static int prune_notes_helper(const unsigned char *object_sha1,
 | |
| 		const unsigned char *note_sha1, char *note_path,
 | |
| 		void *cb_data)
 | |
| {
 | |
| 	struct note_delete_list **l = (struct note_delete_list **) cb_data;
 | |
| 	struct note_delete_list *n;
 | |
| 
 | |
| 	if (has_sha1_file(object_sha1))
 | |
| 		return 0; /* nothing to do for this note */
 | |
| 
 | |
| 	/* failed to find object => prune this note */
 | |
| 	n = (struct note_delete_list *) xmalloc(sizeof(*n));
 | |
| 	n->next = *l;
 | |
| 	n->sha1 = object_sha1;
 | |
| 	*l = n;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int combine_notes_concatenate(unsigned char *cur_sha1,
 | |
| 		const unsigned char *new_sha1)
 | |
| {
 | |
| 	char *cur_msg = NULL, *new_msg = NULL, *buf;
 | |
| 	unsigned long cur_len, new_len, buf_len;
 | |
| 	enum object_type cur_type, new_type;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* read in both note blob objects */
 | |
| 	if (!is_null_sha1(new_sha1))
 | |
| 		new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
 | |
| 	if (!new_msg || !new_len || new_type != OBJ_BLOB) {
 | |
| 		free(new_msg);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (!is_null_sha1(cur_sha1))
 | |
| 		cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
 | |
| 	if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
 | |
| 		free(cur_msg);
 | |
| 		free(new_msg);
 | |
| 		hashcpy(cur_sha1, new_sha1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* we will separate the notes by two newlines anyway */
 | |
| 	if (cur_msg[cur_len - 1] == '\n')
 | |
| 		cur_len--;
 | |
| 
 | |
| 	/* concatenate cur_msg and new_msg into buf */
 | |
| 	buf_len = cur_len + 2 + new_len;
 | |
| 	buf = (char *) xmalloc(buf_len);
 | |
| 	memcpy(buf, cur_msg, cur_len);
 | |
| 	buf[cur_len] = '\n';
 | |
| 	buf[cur_len + 1] = '\n';
 | |
| 	memcpy(buf + cur_len + 2, new_msg, new_len);
 | |
| 	free(cur_msg);
 | |
| 	free(new_msg);
 | |
| 
 | |
| 	/* create a new blob object from buf */
 | |
| 	ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1);
 | |
| 	free(buf);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int combine_notes_overwrite(unsigned char *cur_sha1,
 | |
| 		const unsigned char *new_sha1)
 | |
| {
 | |
| 	hashcpy(cur_sha1, new_sha1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int combine_notes_ignore(unsigned char *cur_sha1,
 | |
| 		const unsigned char *new_sha1)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int string_list_add_note_lines(struct string_list *sort_uniq_list,
 | |
| 				      const unsigned char *sha1)
 | |
| {
 | |
| 	char *data;
 | |
| 	unsigned long len;
 | |
| 	enum object_type t;
 | |
| 	struct strbuf buf = STRBUF_INIT;
 | |
| 	struct strbuf **lines = NULL;
 | |
| 	int i, list_index;
 | |
| 
 | |
| 	if (is_null_sha1(sha1))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* read_sha1_file NUL-terminates */
 | |
| 	data = read_sha1_file(sha1, &t, &len);
 | |
| 	if (t != OBJ_BLOB || !data || !len) {
 | |
| 		free(data);
 | |
| 		return t != OBJ_BLOB || !data;
 | |
| 	}
 | |
| 
 | |
| 	strbuf_attach(&buf, data, len, len + 1);
 | |
| 	lines = strbuf_split(&buf, '\n');
 | |
| 
 | |
| 	for (i = 0; lines[i]; i++) {
 | |
| 		if (lines[i]->buf[lines[i]->len - 1] == '\n')
 | |
| 			strbuf_setlen(lines[i], lines[i]->len - 1);
 | |
| 		if (!lines[i]->len)
 | |
| 			continue; /* skip empty lines */
 | |
| 		list_index = string_list_find_insert_index(sort_uniq_list,
 | |
| 							   lines[i]->buf, 0);
 | |
| 		if (list_index < 0)
 | |
| 			continue; /* skip duplicate lines */
 | |
| 		string_list_insert_at_index(sort_uniq_list, list_index,
 | |
| 					    lines[i]->buf);
 | |
| 	}
 | |
| 
 | |
| 	strbuf_list_free(lines);
 | |
| 	strbuf_release(&buf);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int string_list_join_lines_helper(struct string_list_item *item,
 | |
| 					 void *cb_data)
 | |
| {
 | |
| 	struct strbuf *buf = cb_data;
 | |
| 	strbuf_addstr(buf, item->string);
 | |
| 	strbuf_addch(buf, '\n');
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int combine_notes_cat_sort_uniq(unsigned char *cur_sha1,
 | |
| 		const unsigned char *new_sha1)
 | |
| {
 | |
| 	struct string_list sort_uniq_list = { NULL, 0, 0, 1 };
 | |
| 	struct strbuf buf = STRBUF_INIT;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	/* read both note blob objects into unique_lines */
 | |
| 	if (string_list_add_note_lines(&sort_uniq_list, cur_sha1))
 | |
| 		goto out;
 | |
| 	if (string_list_add_note_lines(&sort_uniq_list, new_sha1))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* create a new blob object from sort_uniq_list */
 | |
| 	if (for_each_string_list(&sort_uniq_list,
 | |
| 				 string_list_join_lines_helper, &buf))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = write_sha1_file(buf.buf, buf.len, blob_type, cur_sha1);
 | |
| 
 | |
| out:
 | |
| 	strbuf_release(&buf);
 | |
| 	string_list_clear(&sort_uniq_list, 0);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int string_list_add_one_ref(const char *path, const unsigned char *sha1,
 | |
| 				   int flag, void *cb)
 | |
| {
 | |
| 	struct string_list *refs = cb;
 | |
| 	if (!unsorted_string_list_has_string(refs, path))
 | |
| 		string_list_append(refs, path);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void string_list_add_refs_by_glob(struct string_list *list, const char *glob)
 | |
| {
 | |
| 	if (has_glob_specials(glob)) {
 | |
| 		for_each_glob_ref(string_list_add_one_ref, glob, list);
 | |
| 	} else {
 | |
| 		unsigned char sha1[20];
 | |
| 		if (get_sha1(glob, sha1))
 | |
| 			warning("notes ref %s is invalid", glob);
 | |
| 		if (!unsorted_string_list_has_string(list, glob))
 | |
| 			string_list_append(list, glob);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void string_list_add_refs_from_colon_sep(struct string_list *list,
 | |
| 					 const char *globs)
 | |
| {
 | |
| 	struct strbuf globbuf = STRBUF_INIT;
 | |
| 	struct strbuf **split;
 | |
| 	int i;
 | |
| 
 | |
| 	strbuf_addstr(&globbuf, globs);
 | |
| 	split = strbuf_split(&globbuf, ':');
 | |
| 
 | |
| 	for (i = 0; split[i]; i++) {
 | |
| 		if (!split[i]->len)
 | |
| 			continue;
 | |
| 		if (split[i]->buf[split[i]->len-1] == ':')
 | |
| 			strbuf_setlen(split[i], split[i]->len-1);
 | |
| 		string_list_add_refs_by_glob(list, split[i]->buf);
 | |
| 	}
 | |
| 
 | |
| 	strbuf_list_free(split);
 | |
| 	strbuf_release(&globbuf);
 | |
| }
 | |
| 
 | |
| static int notes_display_config(const char *k, const char *v, void *cb)
 | |
| {
 | |
| 	int *load_refs = cb;
 | |
| 
 | |
| 	if (*load_refs && !strcmp(k, "notes.displayref")) {
 | |
| 		if (!v)
 | |
| 			config_error_nonbool(k);
 | |
| 		string_list_add_refs_by_glob(&display_notes_refs, v);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| const char *default_notes_ref(void)
 | |
| {
 | |
| 	const char *notes_ref = NULL;
 | |
| 	if (!notes_ref)
 | |
| 		notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
 | |
| 	if (!notes_ref)
 | |
| 		notes_ref = notes_ref_name; /* value of core.notesRef config */
 | |
| 	if (!notes_ref)
 | |
| 		notes_ref = GIT_NOTES_DEFAULT_REF;
 | |
| 	return notes_ref;
 | |
| }
 | |
| 
 | |
| void init_notes(struct notes_tree *t, const char *notes_ref,
 | |
| 		combine_notes_fn combine_notes, int flags)
 | |
| {
 | |
| 	unsigned char sha1[20], object_sha1[20];
 | |
| 	unsigned mode;
 | |
| 	struct leaf_node root_tree;
 | |
| 
 | |
| 	if (!t)
 | |
| 		t = &default_notes_tree;
 | |
| 	assert(!t->initialized);
 | |
| 
 | |
| 	if (!notes_ref)
 | |
| 		notes_ref = default_notes_ref();
 | |
| 
 | |
| 	if (!combine_notes)
 | |
| 		combine_notes = combine_notes_concatenate;
 | |
| 
 | |
| 	t->root = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
 | |
| 	t->first_non_note = NULL;
 | |
| 	t->prev_non_note = NULL;
 | |
| 	t->ref = notes_ref ? xstrdup(notes_ref) : NULL;
 | |
| 	t->combine_notes = combine_notes;
 | |
| 	t->initialized = 1;
 | |
| 	t->dirty = 0;
 | |
| 
 | |
| 	if (flags & NOTES_INIT_EMPTY || !notes_ref ||
 | |
| 	    read_ref(notes_ref, object_sha1))
 | |
| 		return;
 | |
| 	if (get_tree_entry(object_sha1, "", sha1, &mode))
 | |
| 		die("Failed to read notes tree referenced by %s (%s)",
 | |
| 		    notes_ref, sha1_to_hex(object_sha1));
 | |
| 
 | |
| 	hashclr(root_tree.key_sha1);
 | |
| 	hashcpy(root_tree.val_sha1, sha1);
 | |
| 	load_subtree(t, &root_tree, t->root, 0);
 | |
| }
 | |
| 
 | |
| struct notes_tree **load_notes_trees(struct string_list *refs)
 | |
| {
 | |
| 	struct string_list_item *item;
 | |
| 	int counter = 0;
 | |
| 	struct notes_tree **trees;
 | |
| 	trees = xmalloc((refs->nr+1) * sizeof(struct notes_tree *));
 | |
| 	for_each_string_list_item(item, refs) {
 | |
| 		struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree));
 | |
| 		init_notes(t, item->string, combine_notes_ignore, 0);
 | |
| 		trees[counter++] = t;
 | |
| 	}
 | |
| 	trees[counter] = NULL;
 | |
| 	return trees;
 | |
| }
 | |
| 
 | |
| void init_display_notes(struct display_notes_opt *opt)
 | |
| {
 | |
| 	char *display_ref_env;
 | |
| 	int load_config_refs = 0;
 | |
| 	display_notes_refs.strdup_strings = 1;
 | |
| 
 | |
| 	assert(!display_notes_trees);
 | |
| 
 | |
| 	if (!opt || opt->use_default_notes > 0 ||
 | |
| 	    (opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) {
 | |
| 		string_list_append(&display_notes_refs, default_notes_ref());
 | |
| 		display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT);
 | |
| 		if (display_ref_env) {
 | |
| 			string_list_add_refs_from_colon_sep(&display_notes_refs,
 | |
| 							    display_ref_env);
 | |
| 			load_config_refs = 0;
 | |
| 		} else
 | |
| 			load_config_refs = 1;
 | |
| 	}
 | |
| 
 | |
| 	git_config(notes_display_config, &load_config_refs);
 | |
| 
 | |
| 	if (opt) {
 | |
| 		struct string_list_item *item;
 | |
| 		for_each_string_list_item(item, &opt->extra_notes_refs)
 | |
| 			string_list_add_refs_by_glob(&display_notes_refs,
 | |
| 						     item->string);
 | |
| 	}
 | |
| 
 | |
| 	display_notes_trees = load_notes_trees(&display_notes_refs);
 | |
| 	string_list_clear(&display_notes_refs, 0);
 | |
| }
 | |
| 
 | |
| int add_note(struct notes_tree *t, const unsigned char *object_sha1,
 | |
| 		const unsigned char *note_sha1, combine_notes_fn combine_notes)
 | |
| {
 | |
| 	struct leaf_node *l;
 | |
| 
 | |
| 	if (!t)
 | |
| 		t = &default_notes_tree;
 | |
| 	assert(t->initialized);
 | |
| 	t->dirty = 1;
 | |
| 	if (!combine_notes)
 | |
| 		combine_notes = t->combine_notes;
 | |
| 	l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
 | |
| 	hashcpy(l->key_sha1, object_sha1);
 | |
| 	hashcpy(l->val_sha1, note_sha1);
 | |
| 	return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
 | |
| }
 | |
| 
 | |
| int remove_note(struct notes_tree *t, const unsigned char *object_sha1)
 | |
| {
 | |
| 	struct leaf_node l;
 | |
| 
 | |
| 	if (!t)
 | |
| 		t = &default_notes_tree;
 | |
| 	assert(t->initialized);
 | |
| 	hashcpy(l.key_sha1, object_sha1);
 | |
| 	hashclr(l.val_sha1);
 | |
| 	note_tree_remove(t, t->root, 0, &l);
 | |
| 	if (is_null_sha1(l.val_sha1)) /* no note was removed */
 | |
| 		return 1;
 | |
| 	t->dirty = 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| const unsigned char *get_note(struct notes_tree *t,
 | |
| 		const unsigned char *object_sha1)
 | |
| {
 | |
| 	struct leaf_node *found;
 | |
| 
 | |
| 	if (!t)
 | |
| 		t = &default_notes_tree;
 | |
| 	assert(t->initialized);
 | |
| 	found = note_tree_find(t, t->root, 0, object_sha1);
 | |
| 	return found ? found->val_sha1 : NULL;
 | |
| }
 | |
| 
 | |
| int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
 | |
| 		void *cb_data)
 | |
| {
 | |
| 	if (!t)
 | |
| 		t = &default_notes_tree;
 | |
| 	assert(t->initialized);
 | |
| 	return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data);
 | |
| }
 | |
| 
 | |
| int write_notes_tree(struct notes_tree *t, unsigned char *result)
 | |
| {
 | |
| 	struct tree_write_stack root;
 | |
| 	struct write_each_note_data cb_data;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!t)
 | |
| 		t = &default_notes_tree;
 | |
| 	assert(t->initialized);
 | |
| 
 | |
| 	/* Prepare for traversal of current notes tree */
 | |
| 	root.next = NULL; /* last forward entry in list is grounded */
 | |
| 	strbuf_init(&root.buf, 256 * (32 + 40)); /* assume 256 entries */
 | |
| 	root.path[0] = root.path[1] = '\0';
 | |
| 	cb_data.root = &root;
 | |
| 	cb_data.next_non_note = t->first_non_note;
 | |
| 
 | |
| 	/* Write tree objects representing current notes tree */
 | |
| 	ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
 | |
| 				FOR_EACH_NOTE_YIELD_SUBTREES,
 | |
| 			write_each_note, &cb_data) ||
 | |
| 		write_each_non_note_until(NULL, &cb_data) ||
 | |
| 		tree_write_stack_finish_subtree(&root) ||
 | |
| 		write_sha1_file(root.buf.buf, root.buf.len, tree_type, result);
 | |
| 	strbuf_release(&root.buf);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void prune_notes(struct notes_tree *t, int flags)
 | |
| {
 | |
| 	struct note_delete_list *l = NULL;
 | |
| 
 | |
| 	if (!t)
 | |
| 		t = &default_notes_tree;
 | |
| 	assert(t->initialized);
 | |
| 
 | |
| 	for_each_note(t, 0, prune_notes_helper, &l);
 | |
| 
 | |
| 	while (l) {
 | |
| 		if (flags & NOTES_PRUNE_VERBOSE)
 | |
| 			printf("%s\n", sha1_to_hex(l->sha1));
 | |
| 		if (!(flags & NOTES_PRUNE_DRYRUN))
 | |
| 			remove_note(t, l->sha1);
 | |
| 		l = l->next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void free_notes(struct notes_tree *t)
 | |
| {
 | |
| 	if (!t)
 | |
| 		t = &default_notes_tree;
 | |
| 	if (t->root)
 | |
| 		note_tree_free(t->root);
 | |
| 	free(t->root);
 | |
| 	while (t->first_non_note) {
 | |
| 		t->prev_non_note = t->first_non_note->next;
 | |
| 		free(t->first_non_note->path);
 | |
| 		free(t->first_non_note);
 | |
| 		t->first_non_note = t->prev_non_note;
 | |
| 	}
 | |
| 	free(t->ref);
 | |
| 	memset(t, 0, sizeof(struct notes_tree));
 | |
| }
 | |
| 
 | |
| void format_note(struct notes_tree *t, const unsigned char *object_sha1,
 | |
| 		struct strbuf *sb, const char *output_encoding, int flags)
 | |
| {
 | |
| 	static const char utf8[] = "utf-8";
 | |
| 	const unsigned char *sha1;
 | |
| 	char *msg, *msg_p;
 | |
| 	unsigned long linelen, msglen;
 | |
| 	enum object_type type;
 | |
| 
 | |
| 	if (!t)
 | |
| 		t = &default_notes_tree;
 | |
| 	if (!t->initialized)
 | |
| 		init_notes(t, NULL, NULL, 0);
 | |
| 
 | |
| 	sha1 = get_note(t, object_sha1);
 | |
| 	if (!sha1)
 | |
| 		return;
 | |
| 
 | |
| 	if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen ||
 | |
| 			type != OBJ_BLOB) {
 | |
| 		free(msg);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (output_encoding && *output_encoding &&
 | |
| 			strcmp(utf8, output_encoding)) {
 | |
| 		char *reencoded = reencode_string(msg, output_encoding, utf8);
 | |
| 		if (reencoded) {
 | |
| 			free(msg);
 | |
| 			msg = reencoded;
 | |
| 			msglen = strlen(msg);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* we will end the annotation by a newline anyway */
 | |
| 	if (msglen && msg[msglen - 1] == '\n')
 | |
| 		msglen--;
 | |
| 
 | |
| 	if (flags & NOTES_SHOW_HEADER) {
 | |
| 		const char *ref = t->ref;
 | |
| 		if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) {
 | |
| 			strbuf_addstr(sb, "\nNotes:\n");
 | |
| 		} else {
 | |
| 			if (!prefixcmp(ref, "refs/"))
 | |
| 				ref += 5;
 | |
| 			if (!prefixcmp(ref, "notes/"))
 | |
| 				ref += 6;
 | |
| 			strbuf_addf(sb, "\nNotes (%s):\n", ref);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
 | |
| 		linelen = strchrnul(msg_p, '\n') - msg_p;
 | |
| 
 | |
| 		if (flags & NOTES_INDENT)
 | |
| 			strbuf_addstr(sb, "    ");
 | |
| 		strbuf_add(sb, msg_p, linelen);
 | |
| 		strbuf_addch(sb, '\n');
 | |
| 	}
 | |
| 
 | |
| 	free(msg);
 | |
| }
 | |
| 
 | |
| void format_display_notes(const unsigned char *object_sha1,
 | |
| 			  struct strbuf *sb, const char *output_encoding, int flags)
 | |
| {
 | |
| 	int i;
 | |
| 	assert(display_notes_trees);
 | |
| 	for (i = 0; display_notes_trees[i]; i++)
 | |
| 		format_note(display_notes_trees[i], object_sha1, sb,
 | |
| 			    output_encoding, flags);
 | |
| }
 | |
| 
 | |
| int copy_note(struct notes_tree *t,
 | |
| 	      const unsigned char *from_obj, const unsigned char *to_obj,
 | |
| 	      int force, combine_notes_fn combine_notes)
 | |
| {
 | |
| 	const unsigned char *note = get_note(t, from_obj);
 | |
| 	const unsigned char *existing_note = get_note(t, to_obj);
 | |
| 
 | |
| 	if (!force && existing_note)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (note)
 | |
| 		return add_note(t, to_obj, note, combine_notes);
 | |
| 	else if (existing_note)
 | |
| 		return add_note(t, to_obj, null_sha1, combine_notes);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void expand_notes_ref(struct strbuf *sb)
 | |
| {
 | |
| 	if (!prefixcmp(sb->buf, "refs/notes/"))
 | |
| 		return; /* we're happy */
 | |
| 	else if (!prefixcmp(sb->buf, "notes/"))
 | |
| 		strbuf_insert(sb, 0, "refs/", 5);
 | |
| 	else
 | |
| 		strbuf_insert(sb, 0, "refs/notes/", 11);
 | |
| }
 |