git/t/helper/test-trace2.c
Patrick Steinhardt e7da938570 global: introduce USE_THE_REPOSITORY_VARIABLE macro
Use of the `the_repository` variable is deprecated nowadays, and we
slowly but steadily convert the codebase to not use it anymore. Instead,
callers should be passing down the repository to work on via parameters.

It is hard though to prove that a given code unit does not use this
variable anymore. The most trivial case, merely demonstrating that there
is no direct use of `the_repository`, is already a bit of a pain during
code reviews as the reviewer needs to manually verify claims made by the
patch author. The bigger problem though is that we have many interfaces
that implicitly rely on `the_repository`.

Introduce a new `USE_THE_REPOSITORY_VARIABLE` macro that allows code
units to opt into usage of `the_repository`. The intent of this macro is
to demonstrate that a certain code unit does not use this variable
anymore, and to keep it from new dependencies on it in future changes,
be it explicit or implicit

For now, the macro only guards `the_repository` itself as well as
`the_hash_algo`. There are many more known interfaces where we have an
implicit dependency on `the_repository`, but those are not guarded at
the current point in time. Over time though, we should start to add
guards as required (or even better, just remove them).

Define the macro as required in our code units. As expected, most of our
code still relies on the global variable. Nearly all of our builtins
rely on the variable as there is no way yet to pass `the_repository` to
their entry point. For now, declare the macro in "biultin.h" to keep the
required changes at least a little bit more contained.

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-06-14 10:26:33 -07:00

556 lines
14 KiB
C

#define USE_THE_REPOSITORY_VARIABLE
#include "test-tool.h"
#include "strvec.h"
#include "run-command.h"
#include "exec-cmd.h"
#include "config.h"
#include "repository.h"
#include "trace2.h"
typedef int(fn_unit_test)(int argc, const char **argv);
struct unit_test {
fn_unit_test *ut_fn;
const char *ut_name;
const char *ut_usage;
};
#define MyOk 0
#define MyError 1
static int get_i(int *p_value, const char *data)
{
char *endptr;
if (!data || !*data)
return MyError;
*p_value = strtol(data, &endptr, 10);
if (*endptr || errno == ERANGE)
return MyError;
return MyOk;
}
/*
* Cause process to exit with the requested value via "return".
*
* Rely on test-tool.c:cmd_main() to call trace2_cmd_exit()
* with our result.
*
* Test harness can confirm:
* [] the process-exit value.
* [] the "code" field in the "exit" trace2 event.
* [] the "code" field in the "atexit" trace2 event.
* [] the "name" field in the "cmd_name" trace2 event.
* [] "def_param" events for all of the "interesting" pre-defined
* config settings.
*/
static int ut_001return(int argc UNUSED, const char **argv)
{
int rc;
if (get_i(&rc, argv[0]))
die("expect <exit_code>");
return rc;
}
/*
* Cause the process to exit with the requested value via "exit()".
*
* Test harness can confirm:
* [] the "code" field in the "exit" trace2 event.
* [] the "code" field in the "atexit" trace2 event.
* [] the "name" field in the "cmd_name" trace2 event.
* [] "def_param" events for all of the "interesting" pre-defined
* config settings.
*/
static int ut_002exit(int argc UNUSED, const char **argv)
{
int rc;
if (get_i(&rc, argv[0]))
die("expect <exit_code>");
exit(rc);
}
/*
* Send an "error" event with each value in argv. Normally, git only issues
* a single "error" event immediately before issuing an "exit" event (such
* as in die() or BUG()), but multiple "error" events are allowed.
*
* Test harness can confirm:
* [] a trace2 "error" event for each value in argv.
* [] the "name" field in the "cmd_name" trace2 event.
* [] (optional) the file:line in the "exit" event refers to this function.
*/
static int ut_003error(int argc, const char **argv)
{
int k;
if (!argv[0] || !*argv[0])
die("expect <error_message>");
for (k = 0; k < argc; k++)
error("%s", argv[k]);
return 0;
}
/*
* Run a child process and wait for it to finish and exit with its return code.
* test-tool trace2 004child [<child-command-line>]
*
* For example:
* test-tool trace2 004child git version
* test-tool trace2 004child test-tool trace2 001return 0
* test-tool trace2 004child test-tool trace2 004child test-tool trace2 004child
* test-tool trace2 004child git -c alias.xyz=version xyz
*
* Test harness can confirm:
* [] the "name" field in the "cmd_name" trace2 event.
* [] that the outer process has a single component SID (or depth "d0" in
* the PERF stream).
* [] that "child_start" and "child_exit" events are generated for the child.
* [] if the child process is an instrumented executable:
* [] that "version", "start", ..., "exit", and "atexit" events are
* generated by the child process.
* [] that the child process events have a multiple component SID (or
* depth "dN+1" in the PERF stream).
* [] that the child exit code is propagated to the parent process "exit"
* and "atexit" events..
* [] (optional) that the "t_abs" field in the child process "atexit" event
* is less than the "t_rel" field in the "child_exit" event of the parent
* process.
* [] if the child process is like the alias example above,
* [] (optional) the child process attempts to run "git-xyx" as a dashed
* command.
* [] the child process emits an "alias" event with "xyz" => "version"
* [] the child process runs "git version" as a child process.
* [] the child process has a 3 component SID (or depth "d2" in the PERF
* stream).
*/
static int ut_004child(int argc, const char **argv)
{
struct child_process cmd = CHILD_PROCESS_INIT;
int result;
/*
* Allow empty <child_command_line> so we can do arbitrarily deep
* command nesting and let the last one be null.
*/
if (!argc)
return 0;
strvec_pushv(&cmd.args, argv);
result = run_command(&cmd);
exit(result);
}
/*
* Exec a git command. This may either create a child process (Windows)
* or replace the existing process.
* test-tool trace2 005exec <git_command_args>
*
* For example:
* test-tool trace2 005exec version
*
* Test harness can confirm (on Windows):
* [] the "name" field in the "cmd_name" trace2 event.
* [] that the outer process has a single component SID (or depth "d0" in
* the PERF stream).
* [] that "exec" and "exec_result" events are generated for the child
* process (since the Windows compatibility layer fakes an exec() with
* a CreateProcess(), WaitForSingleObject(), and exit()).
* [] that the child process has multiple component SID (or depth "dN+1"
* in the PERF stream).
*
* Test harness can confirm (on platforms with a real exec() function):
* [] TODO talk about process replacement and how it affects SID.
*/
static int ut_005exec(int argc, const char **argv)
{
int result;
if (!argc)
return 0;
result = execv_git_cmd(argv);
return result;
}
static int ut_006data(int argc, const char **argv)
{
const char *usage_error =
"expect <cat0> <k0> <v0> [<cat1> <k1> <v1> [...]]";
if (argc % 3 != 0)
die("%s", usage_error);
while (argc) {
if (!argv[0] || !*argv[0] || !argv[1] || !*argv[1] ||
!argv[2] || !*argv[2])
die("%s", usage_error);
trace2_data_string(argv[0], the_repository, argv[1], argv[2]);
argv += 3;
argc -= 3;
}
return 0;
}
static int ut_007BUG(int argc UNUSED, const char **argv UNUSED)
{
/*
* Exercise BUG() to ensure that the message is printed to trace2.
*/
BUG("the bug message");
}
static int ut_008bug(int argc UNUSED, const char **argv UNUSED)
{
bug("a bug message");
bug("another bug message");
BUG_if_bug("an explicit BUG_if_bug() following bug() call(s) is nice, but not required");
return 0;
}
static int ut_009bug_BUG(int argc UNUSED, const char **argv UNUSED)
{
bug("a bug message");
bug("another bug message");
/* The BUG_if_bug(...) isn't here, but we'll spot bug() calls on exit()! */
return 0;
}
static int ut_010bug_BUG(int argc UNUSED, const char **argv UNUSED)
{
bug("a %s message", "bug");
BUG("a %s message", "BUG");
}
/*
* Single-threaded timer test. Create several intervals using the
* TEST1 timer. The test script can verify that an aggregate Trace2
* "timer" event is emitted indicating that we started+stopped the
* timer the requested number of times.
*/
static int ut_100timer(int argc, const char **argv)
{
const char *usage_error =
"expect <count> <ms_delay>";
int count = 0;
int delay = 0;
int k;
if (argc != 2)
die("%s", usage_error);
if (get_i(&count, argv[0]))
die("%s", usage_error);
if (get_i(&delay, argv[1]))
die("%s", usage_error);
for (k = 0; k < count; k++) {
trace2_timer_start(TRACE2_TIMER_ID_TEST1);
sleep_millisec(delay);
trace2_timer_stop(TRACE2_TIMER_ID_TEST1);
}
return 0;
}
struct ut_101_data {
int count;
int delay;
};
static void *ut_101timer_thread_proc(void *_ut_101_data)
{
struct ut_101_data *data = _ut_101_data;
int k;
trace2_thread_start("ut_101");
for (k = 0; k < data->count; k++) {
trace2_timer_start(TRACE2_TIMER_ID_TEST2);
sleep_millisec(data->delay);
trace2_timer_stop(TRACE2_TIMER_ID_TEST2);
}
trace2_thread_exit();
return NULL;
}
/*
* Multi-threaded timer test. Create several threads that each create
* several intervals using the TEST2 timer. The test script can verify
* that an individual Trace2 "th_timer" events for each thread and an
* aggregate "timer" event are generated.
*/
static int ut_101timer(int argc, const char **argv)
{
const char *usage_error =
"expect <count> <ms_delay> <threads>";
struct ut_101_data data = { 0, 0 };
int nr_threads = 0;
int k;
pthread_t *pids = NULL;
if (argc != 3)
die("%s", usage_error);
if (get_i(&data.count, argv[0]))
die("%s", usage_error);
if (get_i(&data.delay, argv[1]))
die("%s", usage_error);
if (get_i(&nr_threads, argv[2]))
die("%s", usage_error);
CALLOC_ARRAY(pids, nr_threads);
for (k = 0; k < nr_threads; k++) {
if (pthread_create(&pids[k], NULL, ut_101timer_thread_proc, &data))
die("failed to create thread[%d]", k);
}
for (k = 0; k < nr_threads; k++) {
if (pthread_join(pids[k], NULL))
die("failed to join thread[%d]", k);
}
free(pids);
return 0;
}
/*
* Single-threaded counter test. Add several values to the TEST1 counter.
* The test script can verify that the final sum is reported in the "counter"
* event.
*/
static int ut_200counter(int argc, const char **argv)
{
const char *usage_error =
"expect <v1> [<v2> [...]]";
int value;
int k;
if (argc < 1)
die("%s", usage_error);
for (k = 0; k < argc; k++) {
if (get_i(&value, argv[k]))
die("invalid value[%s] -- %s",
argv[k], usage_error);
trace2_counter_add(TRACE2_COUNTER_ID_TEST1, value);
}
return 0;
}
/*
* Multi-threaded counter test. Create seveal threads that each increment
* the TEST2 global counter. The test script can verify that an individual
* "th_counter" event is generated with a partial sum for each thread and
* that a final aggregate "counter" event is generated.
*/
struct ut_201_data {
int v1;
int v2;
};
static void *ut_201counter_thread_proc(void *_ut_201_data)
{
struct ut_201_data *data = _ut_201_data;
trace2_thread_start("ut_201");
trace2_counter_add(TRACE2_COUNTER_ID_TEST2, data->v1);
trace2_counter_add(TRACE2_COUNTER_ID_TEST2, data->v2);
trace2_thread_exit();
return NULL;
}
static int ut_201counter(int argc, const char **argv)
{
const char *usage_error =
"expect <v1> <v2> <threads>";
struct ut_201_data data = { 0, 0 };
int nr_threads = 0;
int k;
pthread_t *pids = NULL;
if (argc != 3)
die("%s", usage_error);
if (get_i(&data.v1, argv[0]))
die("%s", usage_error);
if (get_i(&data.v2, argv[1]))
die("%s", usage_error);
if (get_i(&nr_threads, argv[2]))
die("%s", usage_error);
CALLOC_ARRAY(pids, nr_threads);
for (k = 0; k < nr_threads; k++) {
if (pthread_create(&pids[k], NULL, ut_201counter_thread_proc, &data))
die("failed to create thread[%d]", k);
}
for (k = 0; k < nr_threads; k++) {
if (pthread_join(pids[k], NULL))
die("failed to join thread[%d]", k);
}
free(pids);
return 0;
}
static int ut_300redact_start(int argc, const char **argv)
{
if (!argc)
die("expect <argv...>");
trace2_cmd_start(argv);
return 0;
}
static int ut_301redact_child_start(int argc, const char **argv)
{
struct child_process cmd = CHILD_PROCESS_INIT;
int k;
if (!argc)
die("expect <argv...>");
for (k = 0; argv[k]; k++)
strvec_push(&cmd.args, argv[k]);
trace2_child_start(&cmd);
strvec_clear(&cmd.args);
return 0;
}
static int ut_302redact_exec(int argc, const char **argv)
{
if (!argc)
die("expect <exe> <argv...>");
trace2_exec(argv[0], &argv[1]);
return 0;
}
static int ut_303redact_def_param(int argc, const char **argv)
{
struct key_value_info kvi = KVI_INIT;
if (argc < 2)
die("expect <key> <value>");
trace2_def_param(argv[0], argv[1], &kvi);
return 0;
}
/*
* Usage:
* test-tool trace2 <ut_name_1> <ut_usage_1>
* test-tool trace2 <ut_name_2> <ut_usage_2>
* ...
*/
#define USAGE_PREFIX "test-tool trace2"
/* clang-format off */
static struct unit_test ut_table[] = {
{ ut_001return, "001return", "<exit_code>" },
{ ut_002exit, "002exit", "<exit_code>" },
{ ut_003error, "003error", "<error_message>+" },
{ ut_004child, "004child", "[<child_command_line>]" },
{ ut_005exec, "005exec", "<git_command_args>" },
{ ut_006data, "006data", "[<category> <key> <value>]+" },
{ ut_007BUG, "007bug", "" },
{ ut_008bug, "008bug", "" },
{ ut_009bug_BUG, "009bug_BUG","" },
{ ut_010bug_BUG, "010bug_BUG","" },
{ ut_100timer, "100timer", "<count> <ms_delay>" },
{ ut_101timer, "101timer", "<count> <ms_delay> <threads>" },
{ ut_200counter, "200counter", "<v1> [<v2> [<v3> [...]]]" },
{ ut_201counter, "201counter", "<v1> <v2> <threads>" },
{ ut_300redact_start, "300redact_start", "<argv...>" },
{ ut_301redact_child_start, "301redact_child_start", "<argv...>" },
{ ut_302redact_exec, "302redact_exec", "<exe> <argv...>" },
{ ut_303redact_def_param, "303redact_def_param", "<key> <value>" },
};
/* clang-format on */
/* clang-format off */
#define for_each_ut(k, ut_k) \
for (k = 0, ut_k = &ut_table[k]; \
k < ARRAY_SIZE(ut_table); \
k++, ut_k = &ut_table[k])
/* clang-format on */
static int print_usage(void)
{
int k;
struct unit_test *ut_k;
fprintf(stderr, "usage:\n");
for_each_ut (k, ut_k)
fprintf(stderr, "\t%s %s %s\n", USAGE_PREFIX, ut_k->ut_name,
ut_k->ut_usage);
return 129;
}
/*
* Issue various trace2 events for testing.
*
* We assume that these trace2 routines has already been called:
* [] trace2_initialize() [common-main.c:main()]
* [] trace2_cmd_start() [common-main.c:main()]
* [] trace2_cmd_name() [test-tool.c:cmd_main()]
* [] tracd2_cmd_list_config() [test-tool.c:cmd_main()]
* So that:
* [] the various trace2 streams are open.
* [] the process SID has been created.
* [] the "version" event has been generated.
* [] the "start" event has been generated.
* [] the "cmd_name" event has been generated.
* [] this writes various "def_param" events for interesting config values.
*
* We return from here and let test-tool.c::cmd_main() pass the exit
* code to common-main.c::main(), which will use it to call
* trace2_cmd_exit().
*/
int cmd__trace2(int argc, const char **argv)
{
int k;
struct unit_test *ut_k;
argc--; /* skip over "trace2" arg */
argv++;
if (argc)
for_each_ut (k, ut_k)
if (!strcmp(argv[0], ut_k->ut_name))
return ut_k->ut_fn(argc - 1, argv + 1);
return print_usage();
}