 03670c8b23
			
		
	
	03670c8b23
	
	
	
		
			
			We have several modules originally taken from some upstream source, and which as far as I can tell we no longer update from the upstream anymore. As such, I have not submitted these spelling fixes to any external projects but just include them directly here. Reported-by: Jens Schleusener <Jens.Schleusener@fossies.org> Signed-off-by: Elijah Newren <newren@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
		
			
				
	
	
		
			5762 lines
		
	
	
		
			192 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			5762 lines
		
	
	
		
			192 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|   This is a version (aka dlmalloc) of malloc/free/realloc written by
 | |
|   Doug Lea and released to the public domain, as explained at
 | |
|   http://creativecommons.org/licenses/publicdomain.  Send questions,
 | |
|   comments, complaints, performance data, etc to dl@cs.oswego.edu
 | |
| 
 | |
| * Version pre-2.8.4 Mon Nov 27 11:22:37 2006    (dl at gee)
 | |
| 
 | |
|    Note: There may be an updated version of this malloc obtainable at
 | |
| 	   ftp://gee.cs.oswego.edu/pub/misc/malloc.c
 | |
| 	 Check before installing!
 | |
| 
 | |
| * Quickstart
 | |
| 
 | |
|   This library is all in one file to simplify the most common usage:
 | |
|   ftp it, compile it (-O3), and link it into another program. All of
 | |
|   the compile-time options default to reasonable values for use on
 | |
|   most platforms.  You might later want to step through various
 | |
|   compile-time and dynamic tuning options.
 | |
| 
 | |
|   For convenience, an include file for code using this malloc is at:
 | |
|      ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.4.h
 | |
|   You don't really need this .h file unless you call functions not
 | |
|   defined in your system include files.  The .h file contains only the
 | |
|   excerpts from this file needed for using this malloc on ANSI C/C++
 | |
|   systems, so long as you haven't changed compile-time options about
 | |
|   naming and tuning parameters.  If you do, then you can create your
 | |
|   own malloc.h that does include all settings by cutting at the point
 | |
|   indicated below. Note that you may already by default be using a C
 | |
|   library containing a malloc that is based on some version of this
 | |
|   malloc (for example in linux). You might still want to use the one
 | |
|   in this file to customize settings or to avoid overheads associated
 | |
|   with library versions.
 | |
| 
 | |
| * Vital statistics:
 | |
| 
 | |
|   Supported pointer/size_t representation:       4 or 8 bytes
 | |
|        size_t MUST be an unsigned type of the same width as
 | |
|        pointers. (If you are using an ancient system that declares
 | |
|        size_t as a signed type, or need it to be a different width
 | |
|        than pointers, you can use a previous release of this malloc
 | |
|        (e.g. 2.7.2) supporting these.)
 | |
| 
 | |
|   Alignment:                                     8 bytes (default)
 | |
|        This suffices for nearly all current machines and C compilers.
 | |
|        However, you can define MALLOC_ALIGNMENT to be wider than this
 | |
|        if necessary (up to 128bytes), at the expense of using more space.
 | |
| 
 | |
|   Minimum overhead per allocated chunk:   4 or  8 bytes (if 4byte sizes)
 | |
| 					  8 or 16 bytes (if 8byte sizes)
 | |
|        Each malloced chunk has a hidden word of overhead holding size
 | |
|        and status information, and additional cross-check word
 | |
|        if FOOTERS is defined.
 | |
| 
 | |
|   Minimum allocated size: 4-byte ptrs:  16 bytes    (including overhead)
 | |
| 			  8-byte ptrs:  32 bytes    (including overhead)
 | |
| 
 | |
|        Even a request for zero bytes (i.e., malloc(0)) returns a
 | |
|        pointer to something of the minimum allocatable size.
 | |
|        The maximum overhead wastage (i.e., number of extra bytes
 | |
|        allocated than were requested in malloc) is less than or equal
 | |
|        to the minimum size, except for requests >= mmap_threshold that
 | |
|        are serviced via mmap(), where the worst case wastage is about
 | |
|        32 bytes plus the remainder from a system page (the minimal
 | |
|        mmap unit); typically 4096 or 8192 bytes.
 | |
| 
 | |
|   Security: static-safe; optionally more or less
 | |
|        The "security" of malloc refers to the ability of malicious
 | |
|        code to accentuate the effects of errors (for example, freeing
 | |
|        space that is not currently malloc'ed or overwriting past the
 | |
|        ends of chunks) in code that calls malloc.  This malloc
 | |
|        guarantees not to modify any memory locations below the base of
 | |
|        heap, i.e., static variables, even in the presence of usage
 | |
|        errors.  The routines additionally detect most improper frees
 | |
|        and reallocs.  All this holds as long as the static bookkeeping
 | |
|        for malloc itself is not corrupted by some other means.  This
 | |
|        is only one aspect of security -- these checks do not, and
 | |
|        cannot, detect all possible programming errors.
 | |
| 
 | |
|        If FOOTERS is defined nonzero, then each allocated chunk
 | |
|        carries an additional check word to verify that it was malloced
 | |
|        from its space.  These check words are the same within each
 | |
|        execution of a program using malloc, but differ across
 | |
|        executions, so externally crafted fake chunks cannot be
 | |
|        freed. This improves security by rejecting frees/reallocs that
 | |
|        could corrupt heap memory, in addition to the checks preventing
 | |
|        writes to statics that are always on.  This may further improve
 | |
|        security at the expense of time and space overhead.  (Note that
 | |
|        FOOTERS may also be worth using with MSPACES.)
 | |
| 
 | |
|        By default detected errors cause the program to abort (calling
 | |
|        "abort()"). You can override this to instead proceed past
 | |
|        errors by defining PROCEED_ON_ERROR.  In this case, a bad free
 | |
|        has no effect, and a malloc that encounters a bad address
 | |
|        caused by user overwrites will ignore the bad address by
 | |
|        dropping pointers and indices to all known memory. This may
 | |
|        be appropriate for programs that should continue if at all
 | |
|        possible in the face of programming errors, although they may
 | |
|        run out of memory because dropped memory is never reclaimed.
 | |
| 
 | |
|        If you don't like either of these options, you can define
 | |
|        CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
 | |
|        else. And if you are sure that your program using malloc has
 | |
|        no errors or vulnerabilities, you can define INSECURE to 1,
 | |
|        which might (or might not) provide a small performance improvement.
 | |
| 
 | |
|   Thread-safety: NOT thread-safe unless USE_LOCKS defined
 | |
|        When USE_LOCKS is defined, each public call to malloc, free,
 | |
|        etc is surrounded with either a pthread mutex or a win32
 | |
|        spinlock (depending on WIN32). This is not especially fast, and
 | |
|        can be a major bottleneck.  It is designed only to provide
 | |
|        minimal protection in concurrent environments, and to provide a
 | |
|        basis for extensions.  If you are using malloc in a concurrent
 | |
|        program, consider instead using nedmalloc
 | |
|        (http://www.nedprod.com/programs/portable/nedmalloc/) or
 | |
|        ptmalloc (See http://www.malloc.de), which are derived
 | |
|        from versions of this malloc.
 | |
| 
 | |
|   System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
 | |
|        This malloc can use unix sbrk or any emulation (invoked using
 | |
|        the CALL_MORECORE macro) and/or mmap/munmap or any emulation
 | |
|        (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
 | |
|        memory.  On most unix systems, it tends to work best if both
 | |
|        MORECORE and MMAP are enabled.  On Win32, it uses emulations
 | |
|        based on VirtualAlloc. It also uses common C library functions
 | |
|        like memset.
 | |
| 
 | |
|   Compliance: I believe it is compliant with the Single Unix Specification
 | |
|        (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
 | |
|        others as well.
 | |
| 
 | |
| * Overview of algorithms
 | |
| 
 | |
|   This is not the fastest, most space-conserving, most portable, or
 | |
|   most tunable malloc ever written. However it is among the fastest
 | |
|   while also being among the most space-conserving, portable and
 | |
|   tunable.  Consistent balance across these factors results in a good
 | |
|   general-purpose allocator for malloc-intensive programs.
 | |
| 
 | |
|   In most ways, this malloc is a best-fit allocator. Generally, it
 | |
|   chooses the best-fitting existing chunk for a request, with ties
 | |
|   broken in approximately least-recently-used order. (This strategy
 | |
|   normally maintains low fragmentation.) However, for requests less
 | |
|   than 256bytes, it deviates from best-fit when there is not an
 | |
|   exactly fitting available chunk by preferring to use space adjacent
 | |
|   to that used for the previous small request, as well as by breaking
 | |
|   ties in approximately most-recently-used order. (These enhance
 | |
|   locality of series of small allocations.)  And for very large requests
 | |
|   (>= 256Kb by default), it relies on system memory mapping
 | |
|   facilities, if supported.  (This helps avoid carrying around and
 | |
|   possibly fragmenting memory used only for large chunks.)
 | |
| 
 | |
|   All operations (except malloc_stats and mallinfo) have execution
 | |
|   times that are bounded by a constant factor of the number of bits in
 | |
|   a size_t, not counting any clearing in calloc or copying in realloc,
 | |
|   or actions surrounding MORECORE and MMAP that have times
 | |
|   proportional to the number of non-contiguous regions returned by
 | |
|   system allocation routines, which is often just 1. In real-time
 | |
|   applications, you can optionally suppress segment traversals using
 | |
|   NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
 | |
|   system allocators return non-contiguous spaces, at the typical
 | |
|   expense of carrying around more memory and increased fragmentation.
 | |
| 
 | |
|   The implementation is not very modular and seriously overuses
 | |
|   macros. Perhaps someday all C compilers will do as good a job
 | |
|   inlining modular code as can now be done by brute-force expansion,
 | |
|   but now, enough of them seem not to.
 | |
| 
 | |
|   Some compilers issue a lot of warnings about code that is
 | |
|   dead/unreachable only on some platforms, and also about intentional
 | |
|   uses of negation on unsigned types. All known cases of each can be
 | |
|   ignored.
 | |
| 
 | |
|   For a longer but out of date high-level description, see
 | |
|      http://gee.cs.oswego.edu/dl/html/malloc.html
 | |
| 
 | |
| * MSPACES
 | |
|   If MSPACES is defined, then in addition to malloc, free, etc.,
 | |
|   this file also defines mspace_malloc, mspace_free, etc. These
 | |
|   are versions of malloc routines that take an "mspace" argument
 | |
|   obtained using create_mspace, to control all internal bookkeeping.
 | |
|   If ONLY_MSPACES is defined, only these versions are compiled.
 | |
|   So if you would like to use this allocator for only some allocations,
 | |
|   and your system malloc for others, you can compile with
 | |
|   ONLY_MSPACES and then do something like...
 | |
|     static mspace mymspace = create_mspace(0,0); // for example
 | |
|     #define mymalloc(bytes)  mspace_malloc(mymspace, bytes)
 | |
| 
 | |
|   (Note: If you only need one instance of an mspace, you can instead
 | |
|   use "USE_DL_PREFIX" to relabel the global malloc.)
 | |
| 
 | |
|   You can similarly create thread-local allocators by storing
 | |
|   mspaces as thread-locals. For example:
 | |
|     static __thread mspace tlms = 0;
 | |
|     void*  tlmalloc(size_t bytes) {
 | |
|       if (tlms == 0) tlms = create_mspace(0, 0);
 | |
|       return mspace_malloc(tlms, bytes);
 | |
|     }
 | |
|     void  tlfree(void* mem) { mspace_free(tlms, mem); }
 | |
| 
 | |
|   Unless FOOTERS is defined, each mspace is completely independent.
 | |
|   You cannot allocate from one and free to another (although
 | |
|   conformance is only weakly checked, so usage errors are not always
 | |
|   caught). If FOOTERS is defined, then each chunk carries around a tag
 | |
|   indicating its originating mspace, and frees are directed to their
 | |
|   originating spaces.
 | |
| 
 | |
|  -------------------------  Compile-time options ---------------------------
 | |
| 
 | |
| Be careful in setting #define values for numerical constants of type
 | |
| size_t. On some systems, literal values are not automatically extended
 | |
| to size_t precision unless they are explicitly casted. You can also
 | |
| use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
 | |
| 
 | |
| WIN32                    default: defined if _WIN32 defined
 | |
|   Defining WIN32 sets up defaults for MS environment and compilers.
 | |
|   Otherwise defaults are for unix. Beware that there seem to be some
 | |
|   cases where this malloc might not be a pure drop-in replacement for
 | |
|   Win32 malloc: Random-looking failures from Win32 GDI API's (eg;
 | |
|   SetDIBits()) may be due to bugs in some video driver implementations
 | |
|   when pixel buffers are malloc()ed, and the region spans more than
 | |
|   one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb)
 | |
|   default granularity, pixel buffers may straddle virtual allocation
 | |
|   regions more often than when using the Microsoft allocator.  You can
 | |
|   avoid this by using VirtualAlloc() and VirtualFree() for all pixel
 | |
|   buffers rather than using malloc().  If this is not possible,
 | |
|   recompile this malloc with a larger DEFAULT_GRANULARITY.
 | |
| 
 | |
| MALLOC_ALIGNMENT         default: (size_t)8
 | |
|   Controls the minimum alignment for malloc'ed chunks.  It must be a
 | |
|   power of two and at least 8, even on machines for which smaller
 | |
|   alignments would suffice. It may be defined as larger than this
 | |
|   though. Note however that code and data structures are optimized for
 | |
|   the case of 8-byte alignment.
 | |
| 
 | |
| MSPACES                  default: 0 (false)
 | |
|   If true, compile in support for independent allocation spaces.
 | |
|   This is only supported if HAVE_MMAP is true.
 | |
| 
 | |
| ONLY_MSPACES             default: 0 (false)
 | |
|   If true, only compile in mspace versions, not regular versions.
 | |
| 
 | |
| USE_LOCKS                default: 0 (false)
 | |
|   Causes each call to each public routine to be surrounded with
 | |
|   pthread or WIN32 mutex lock/unlock. (If set true, this can be
 | |
|   overridden on a per-mspace basis for mspace versions.) If set to a
 | |
|   non-zero value other than 1, locks are used, but their
 | |
|   implementation is left out, so lock functions must be supplied manually.
 | |
| 
 | |
| USE_SPIN_LOCKS           default: 1 iff USE_LOCKS and on x86 using gcc or MSC
 | |
|   If true, uses custom spin locks for locking. This is currently
 | |
|   supported only for x86 platforms using gcc or recent MS compilers.
 | |
|   Otherwise, posix locks or win32 critical sections are used.
 | |
| 
 | |
| FOOTERS                  default: 0
 | |
|   If true, provide extra checking and dispatching by placing
 | |
|   information in the footers of allocated chunks. This adds
 | |
|   space and time overhead.
 | |
| 
 | |
| INSECURE                 default: 0
 | |
|   If true, omit checks for usage errors and heap space overwrites.
 | |
| 
 | |
| USE_DL_PREFIX            default: NOT defined
 | |
|   Causes compiler to prefix all public routines with the string 'dl'.
 | |
|   This can be useful when you only want to use this malloc in one part
 | |
|   of a program, using your regular system malloc elsewhere.
 | |
| 
 | |
| ABORT                    default: defined as abort()
 | |
|   Defines how to abort on failed checks.  On most systems, a failed
 | |
|   check cannot die with an "assert" or even print an informative
 | |
|   message, because the underlying print routines in turn call malloc,
 | |
|   which will fail again.  Generally, the best policy is to simply call
 | |
|   abort(). It's not very useful to do more than this because many
 | |
|   errors due to overwriting will show up as address faults (null, odd
 | |
|   addresses etc) rather than malloc-triggered checks, so will also
 | |
|   abort.  Also, most compilers know that abort() does not return, so
 | |
|   can better optimize code conditionally calling it.
 | |
| 
 | |
| PROCEED_ON_ERROR           default: defined as 0 (false)
 | |
|   Controls whether detected bad addresses cause them to bypassed
 | |
|   rather than aborting. If set, detected bad arguments to free and
 | |
|   realloc are ignored. And all bookkeeping information is zeroed out
 | |
|   upon a detected overwrite of freed heap space, thus losing the
 | |
|   ability to ever return it from malloc again, but enabling the
 | |
|   application to proceed. If PROCEED_ON_ERROR is defined, the
 | |
|   static variable malloc_corruption_error_count is compiled in
 | |
|   and can be examined to see if errors have occurred. This option
 | |
|   generates slower code than the default abort policy.
 | |
| 
 | |
| DEBUG                    default: NOT defined
 | |
|   The DEBUG setting is mainly intended for people trying to modify
 | |
|   this code or diagnose problems when porting to new platforms.
 | |
|   However, it may also be able to better isolate user errors than just
 | |
|   using runtime checks.  The assertions in the check routines spell
 | |
|   out in more detail the assumptions and invariants underlying the
 | |
|   algorithms.  The checking is fairly extensive, and will slow down
 | |
|   execution noticeably. Calling malloc_stats or mallinfo with DEBUG
 | |
|   set will attempt to check every non-mmapped allocated and free chunk
 | |
|   in the course of computing the summaries.
 | |
| 
 | |
| ABORT_ON_ASSERT_FAILURE   default: defined as 1 (true)
 | |
|   Debugging assertion failures can be nearly impossible if your
 | |
|   version of the assert macro causes malloc to be called, which will
 | |
|   lead to a cascade of further failures, blowing the runtime stack.
 | |
|   ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
 | |
|   which will usually make debugging easier.
 | |
| 
 | |
| MALLOC_FAILURE_ACTION     default: sets errno to ENOMEM, or no-op on win32
 | |
|   The action to take before "return 0" when malloc fails to be able to
 | |
|   return memory because there is none available.
 | |
| 
 | |
| HAVE_MORECORE             default: 1 (true) unless win32 or ONLY_MSPACES
 | |
|   True if this system supports sbrk or an emulation of it.
 | |
| 
 | |
| MORECORE                  default: sbrk
 | |
|   The name of the sbrk-style system routine to call to obtain more
 | |
|   memory.  See below for guidance on writing custom MORECORE
 | |
|   functions. The type of the argument to sbrk/MORECORE varies across
 | |
|   systems.  It cannot be size_t, because it supports negative
 | |
|   arguments, so it is normally the signed type of the same width as
 | |
|   size_t (sometimes declared as "intptr_t").  It doesn't much matter
 | |
|   though. Internally, we only call it with arguments less than half
 | |
|   the max value of a size_t, which should work across all reasonable
 | |
|   possibilities, although sometimes generating compiler warnings.
 | |
| 
 | |
| MORECORE_CONTIGUOUS       default: 1 (true) if HAVE_MORECORE
 | |
|   If true, take advantage of fact that consecutive calls to MORECORE
 | |
|   with positive arguments always return contiguous increasing
 | |
|   addresses.  This is true of unix sbrk. It does not hurt too much to
 | |
|   set it true anyway, since malloc copes with non-contiguities.
 | |
|   Setting it false when definitely non-contiguous saves time
 | |
|   and possibly wasted space it would take to discover this though.
 | |
| 
 | |
| MORECORE_CANNOT_TRIM      default: NOT defined
 | |
|   True if MORECORE cannot release space back to the system when given
 | |
|   negative arguments. This is generally necessary only if you are
 | |
|   using a hand-crafted MORECORE function that cannot handle negative
 | |
|   arguments.
 | |
| 
 | |
| NO_SEGMENT_TRAVERSAL       default: 0
 | |
|   If non-zero, suppresses traversals of memory segments
 | |
|   returned by either MORECORE or CALL_MMAP. This disables
 | |
|   merging of segments that are contiguous, and selectively
 | |
|   releasing them to the OS if unused, but bounds execution times.
 | |
| 
 | |
| HAVE_MMAP                 default: 1 (true)
 | |
|   True if this system supports mmap or an emulation of it.  If so, and
 | |
|   HAVE_MORECORE is not true, MMAP is used for all system
 | |
|   allocation. If set and HAVE_MORECORE is true as well, MMAP is
 | |
|   primarily used to directly allocate very large blocks. It is also
 | |
|   used as a backup strategy in cases where MORECORE fails to provide
 | |
|   space from system. Note: A single call to MUNMAP is assumed to be
 | |
|   able to unmap memory that may have be allocated using multiple calls
 | |
|   to MMAP, so long as they are adjacent.
 | |
| 
 | |
| HAVE_MREMAP               default: 1 on linux, else 0
 | |
|   If true realloc() uses mremap() to re-allocate large blocks and
 | |
|   extend or shrink allocation spaces.
 | |
| 
 | |
| MMAP_CLEARS               default: 1 except on WINCE.
 | |
|   True if mmap clears memory so calloc doesn't need to. This is true
 | |
|   for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
 | |
| 
 | |
| USE_BUILTIN_FFS            default: 0 (i.e., not used)
 | |
|   Causes malloc to use the builtin ffs() function to compute indices.
 | |
|   Some compilers may recognize and intrinsify ffs to be faster than the
 | |
|   supplied C version. Also, the case of x86 using gcc is special-cased
 | |
|   to an asm instruction, so is already as fast as it can be, and so
 | |
|   this setting has no effect. Similarly for Win32 under recent MS compilers.
 | |
|   (On most x86s, the asm version is only slightly faster than the C version.)
 | |
| 
 | |
| malloc_getpagesize         default: derive from system includes, or 4096.
 | |
|   The system page size. To the extent possible, this malloc manages
 | |
|   memory from the system in page-size units.  This may be (and
 | |
|   usually is) a function rather than a constant. This is ignored
 | |
|   if WIN32, where page size is determined using getSystemInfo during
 | |
|   initialization.
 | |
| 
 | |
| USE_DEV_RANDOM             default: 0 (i.e., not used)
 | |
|   Causes malloc to use /dev/random to initialize secure magic seed for
 | |
|   stamping footers. Otherwise, the current time is used.
 | |
| 
 | |
| NO_MALLINFO                default: 0
 | |
|   If defined, don't compile "mallinfo". This can be a simple way
 | |
|   of dealing with mismatches between system declarations and
 | |
|   those in this file.
 | |
| 
 | |
| MALLINFO_FIELD_TYPE        default: size_t
 | |
|   The type of the fields in the mallinfo struct. This was originally
 | |
|   defined as "int" in SVID etc, but is more usefully defined as
 | |
|   size_t. The value is used only if  HAVE_USR_INCLUDE_MALLOC_H is not set
 | |
| 
 | |
| REALLOC_ZERO_BYTES_FREES    default: not defined
 | |
|   This should be set if a call to realloc with zero bytes should
 | |
|   be the same as a call to free. Some people think it should. Otherwise,
 | |
|   since this malloc returns a unique pointer for malloc(0), so does
 | |
|   realloc(p, 0).
 | |
| 
 | |
| LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
 | |
| LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H,  LACKS_ERRNO_H
 | |
| LACKS_STDLIB_H                default: NOT defined unless on WIN32
 | |
|   Define these if your system does not have these header files.
 | |
|   You might need to manually insert some of the declarations they provide.
 | |
| 
 | |
| DEFAULT_GRANULARITY        default: page size if MORECORE_CONTIGUOUS,
 | |
| 				system_info.dwAllocationGranularity in WIN32,
 | |
| 				otherwise 64K.
 | |
|       Also settable using mallopt(M_GRANULARITY, x)
 | |
|   The unit for allocating and deallocating memory from the system.  On
 | |
|   most systems with contiguous MORECORE, there is no reason to
 | |
|   make this more than a page. However, systems with MMAP tend to
 | |
|   either require or encourage larger granularities.  You can increase
 | |
|   this value to prevent system allocation functions to be called so
 | |
|   often, especially if they are slow.  The value must be at least one
 | |
|   page and must be a power of two.  Setting to 0 causes initialization
 | |
|   to either page size or win32 region size.  (Note: In previous
 | |
|   versions of malloc, the equivalent of this option was called
 | |
|   "TOP_PAD")
 | |
| 
 | |
| DEFAULT_TRIM_THRESHOLD    default: 2MB
 | |
|       Also settable using mallopt(M_TRIM_THRESHOLD, x)
 | |
|   The maximum amount of unused top-most memory to keep before
 | |
|   releasing via malloc_trim in free().  Automatic trimming is mainly
 | |
|   useful in long-lived programs using contiguous MORECORE.  Because
 | |
|   trimming via sbrk can be slow on some systems, and can sometimes be
 | |
|   wasteful (in cases where programs immediately afterward allocate
 | |
|   more large chunks) the value should be high enough so that your
 | |
|   overall system performance would improve by releasing this much
 | |
|   memory.  As a rough guide, you might set to a value close to the
 | |
|   average size of a process (program) running on your system.
 | |
|   Releasing this much memory would allow such a process to run in
 | |
|   memory.  Generally, it is worth tuning trim thresholds when a
 | |
|   program undergoes phases where several large chunks are allocated
 | |
|   and released in ways that can reuse each other's storage, perhaps
 | |
|   mixed with phases where there are no such chunks at all. The trim
 | |
|   value must be greater than page size to have any useful effect.  To
 | |
|   disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
 | |
|   some people use of mallocing a huge space and then freeing it at
 | |
|   program startup, in an attempt to reserve system memory, doesn't
 | |
|   have the intended effect under automatic trimming, since that memory
 | |
|   will immediately be returned to the system.
 | |
| 
 | |
| DEFAULT_MMAP_THRESHOLD       default: 256K
 | |
|       Also settable using mallopt(M_MMAP_THRESHOLD, x)
 | |
|   The request size threshold for using MMAP to directly service a
 | |
|   request. Requests of at least this size that cannot be allocated
 | |
|   using already-existing space will be serviced via mmap.  (If enough
 | |
|   normal freed space already exists it is used instead.)  Using mmap
 | |
|   segregates relatively large chunks of memory so that they can be
 | |
|   individually obtained and released from the host system. A request
 | |
|   serviced through mmap is never reused by any other request (at least
 | |
|   not directly; the system may just so happen to remap successive
 | |
|   requests to the same locations).  Segregating space in this way has
 | |
|   the benefits that: Mmapped space can always be individually released
 | |
|   back to the system, which helps keep the system level memory demands
 | |
|   of a long-lived program low.  Also, mapped memory doesn't become
 | |
|   `locked' between other chunks, as can happen with normally allocated
 | |
|   chunks, which means that even trimming via malloc_trim would not
 | |
|   release them.  However, it has the disadvantage that the space
 | |
|   cannot be reclaimed, consolidated, and then used to service later
 | |
|   requests, as happens with normal chunks.  The advantages of mmap
 | |
|   nearly always outweigh disadvantages for "large" chunks, but the
 | |
|   value of "large" may vary across systems.  The default is an
 | |
|   empirically derived value that works well in most systems. You can
 | |
|   disable mmap by setting to MAX_SIZE_T.
 | |
| 
 | |
| MAX_RELEASE_CHECK_RATE   default: 4095 unless not HAVE_MMAP
 | |
|   The number of consolidated frees between checks to release
 | |
|   unused segments when freeing. When using non-contiguous segments,
 | |
|   especially with multiple mspaces, checking only for topmost space
 | |
|   doesn't always suffice to trigger trimming. To compensate for this,
 | |
|   free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
 | |
|   current number of segments, if greater) try to release unused
 | |
|   segments to the OS when freeing chunks that result in
 | |
|   consolidation. The best value for this parameter is a compromise
 | |
|   between slowing down frees with relatively costly checks that
 | |
|   rarely trigger versus holding on to unused memory. To effectively
 | |
|   disable, set to MAX_SIZE_T. This may lead to a very slight speed
 | |
|   improvement at the expense of carrying around more memory.
 | |
| */
 | |
| 
 | |
| /* Version identifier to allow people to support multiple versions */
 | |
| #ifndef DLMALLOC_VERSION
 | |
| #define DLMALLOC_VERSION 20804
 | |
| #endif /* DLMALLOC_VERSION */
 | |
| 
 | |
| #if defined(linux)
 | |
| #define _GNU_SOURCE 1
 | |
| #endif
 | |
| 
 | |
| #ifndef WIN32
 | |
| #ifdef _WIN32
 | |
| #define WIN32 1
 | |
| #endif  /* _WIN32 */
 | |
| #ifdef _WIN32_WCE
 | |
| #define LACKS_FCNTL_H
 | |
| #define WIN32 1
 | |
| #endif /* _WIN32_WCE */
 | |
| #endif  /* WIN32 */
 | |
| #ifdef WIN32
 | |
| #define WIN32_LEAN_AND_MEAN
 | |
| #ifndef _WIN32_WINNT
 | |
| #define _WIN32_WINNT 0x403
 | |
| #endif
 | |
| #include <windows.h>
 | |
| #define HAVE_MMAP 1
 | |
| #define HAVE_MORECORE 0
 | |
| #define LACKS_UNISTD_H
 | |
| #define LACKS_SYS_PARAM_H
 | |
| #define LACKS_SYS_MMAN_H
 | |
| #define LACKS_STRING_H
 | |
| #define LACKS_STRINGS_H
 | |
| #define LACKS_SYS_TYPES_H
 | |
| #define LACKS_ERRNO_H
 | |
| #ifndef MALLOC_FAILURE_ACTION
 | |
| #define MALLOC_FAILURE_ACTION
 | |
| #endif /* MALLOC_FAILURE_ACTION */
 | |
| #ifdef _WIN32_WCE /* WINCE reportedly does not clear */
 | |
| #define MMAP_CLEARS 0
 | |
| #else
 | |
| #define MMAP_CLEARS 1
 | |
| #endif /* _WIN32_WCE */
 | |
| #endif  /* WIN32 */
 | |
| 
 | |
| #if defined(DARWIN) || defined(_DARWIN)
 | |
| /* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
 | |
| #ifndef HAVE_MORECORE
 | |
| #define HAVE_MORECORE 0
 | |
| #define HAVE_MMAP 1
 | |
| /* OSX allocators provide 16 byte alignment */
 | |
| #ifndef MALLOC_ALIGNMENT
 | |
| #define MALLOC_ALIGNMENT ((size_t)16U)
 | |
| #endif
 | |
| #endif  /* HAVE_MORECORE */
 | |
| #endif  /* DARWIN */
 | |
| 
 | |
| #ifndef LACKS_SYS_TYPES_H
 | |
| #include <sys/types.h>  /* For size_t */
 | |
| #endif  /* LACKS_SYS_TYPES_H */
 | |
| 
 | |
| /* The maximum possible size_t value has all bits set */
 | |
| #define MAX_SIZE_T           (~(size_t)0)
 | |
| 
 | |
| #ifndef ONLY_MSPACES
 | |
| #define ONLY_MSPACES 0     /* define to a value */
 | |
| #else
 | |
| #define ONLY_MSPACES 1
 | |
| #endif  /* ONLY_MSPACES */
 | |
| #ifndef MSPACES
 | |
| #if ONLY_MSPACES
 | |
| #define MSPACES 1
 | |
| #else   /* ONLY_MSPACES */
 | |
| #define MSPACES 0
 | |
| #endif  /* ONLY_MSPACES */
 | |
| #endif  /* MSPACES */
 | |
| #ifndef MALLOC_ALIGNMENT
 | |
| #define MALLOC_ALIGNMENT ((size_t)8U)
 | |
| #endif  /* MALLOC_ALIGNMENT */
 | |
| #ifndef FOOTERS
 | |
| #define FOOTERS 0
 | |
| #endif  /* FOOTERS */
 | |
| #ifndef ABORT
 | |
| #define ABORT  abort()
 | |
| #endif  /* ABORT */
 | |
| #ifndef ABORT_ON_ASSERT_FAILURE
 | |
| #define ABORT_ON_ASSERT_FAILURE 1
 | |
| #endif  /* ABORT_ON_ASSERT_FAILURE */
 | |
| #ifndef PROCEED_ON_ERROR
 | |
| #define PROCEED_ON_ERROR 0
 | |
| #endif  /* PROCEED_ON_ERROR */
 | |
| #ifndef USE_LOCKS
 | |
| #define USE_LOCKS 0
 | |
| #endif  /* USE_LOCKS */
 | |
| #ifndef USE_SPIN_LOCKS
 | |
| #if USE_LOCKS && (defined(__GNUC__) && ((defined(__i386__) || defined(__x86_64__)))) || (defined(_MSC_VER) && _MSC_VER>=1310)
 | |
| #define USE_SPIN_LOCKS 1
 | |
| #else
 | |
| #define USE_SPIN_LOCKS 0
 | |
| #endif /* USE_LOCKS && ... */
 | |
| #endif /* USE_SPIN_LOCKS */
 | |
| #ifndef INSECURE
 | |
| #define INSECURE 0
 | |
| #endif  /* INSECURE */
 | |
| #ifndef HAVE_MMAP
 | |
| #define HAVE_MMAP 1
 | |
| #endif  /* HAVE_MMAP */
 | |
| #ifndef MMAP_CLEARS
 | |
| #define MMAP_CLEARS 1
 | |
| #endif  /* MMAP_CLEARS */
 | |
| #ifndef HAVE_MREMAP
 | |
| #ifdef linux
 | |
| #define HAVE_MREMAP 1
 | |
| #else   /* linux */
 | |
| #define HAVE_MREMAP 0
 | |
| #endif  /* linux */
 | |
| #endif  /* HAVE_MREMAP */
 | |
| #ifndef MALLOC_FAILURE_ACTION
 | |
| #define MALLOC_FAILURE_ACTION  errno = ENOMEM;
 | |
| #endif  /* MALLOC_FAILURE_ACTION */
 | |
| #ifndef HAVE_MORECORE
 | |
| #if ONLY_MSPACES
 | |
| #define HAVE_MORECORE 0
 | |
| #else   /* ONLY_MSPACES */
 | |
| #define HAVE_MORECORE 1
 | |
| #endif  /* ONLY_MSPACES */
 | |
| #endif  /* HAVE_MORECORE */
 | |
| #if !HAVE_MORECORE
 | |
| #define MORECORE_CONTIGUOUS 0
 | |
| #else   /* !HAVE_MORECORE */
 | |
| #define MORECORE_DEFAULT sbrk
 | |
| #ifndef MORECORE_CONTIGUOUS
 | |
| #define MORECORE_CONTIGUOUS 1
 | |
| #endif  /* MORECORE_CONTIGUOUS */
 | |
| #endif  /* HAVE_MORECORE */
 | |
| #ifndef DEFAULT_GRANULARITY
 | |
| #if (MORECORE_CONTIGUOUS || defined(WIN32))
 | |
| #define DEFAULT_GRANULARITY (0)  /* 0 means to compute in init_mparams */
 | |
| #else   /* MORECORE_CONTIGUOUS */
 | |
| #define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
 | |
| #endif  /* MORECORE_CONTIGUOUS */
 | |
| #endif  /* DEFAULT_GRANULARITY */
 | |
| #ifndef DEFAULT_TRIM_THRESHOLD
 | |
| #ifndef MORECORE_CANNOT_TRIM
 | |
| #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
 | |
| #else   /* MORECORE_CANNOT_TRIM */
 | |
| #define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
 | |
| #endif  /* MORECORE_CANNOT_TRIM */
 | |
| #endif  /* DEFAULT_TRIM_THRESHOLD */
 | |
| #ifndef DEFAULT_MMAP_THRESHOLD
 | |
| #if HAVE_MMAP
 | |
| #define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
 | |
| #else   /* HAVE_MMAP */
 | |
| #define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
 | |
| #endif  /* HAVE_MMAP */
 | |
| #endif  /* DEFAULT_MMAP_THRESHOLD */
 | |
| #ifndef MAX_RELEASE_CHECK_RATE
 | |
| #if HAVE_MMAP
 | |
| #define MAX_RELEASE_CHECK_RATE 4095
 | |
| #else
 | |
| #define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
 | |
| #endif /* HAVE_MMAP */
 | |
| #endif /* MAX_RELEASE_CHECK_RATE */
 | |
| #ifndef USE_BUILTIN_FFS
 | |
| #define USE_BUILTIN_FFS 0
 | |
| #endif  /* USE_BUILTIN_FFS */
 | |
| #ifndef USE_DEV_RANDOM
 | |
| #define USE_DEV_RANDOM 0
 | |
| #endif  /* USE_DEV_RANDOM */
 | |
| #ifndef NO_MALLINFO
 | |
| #define NO_MALLINFO 0
 | |
| #endif  /* NO_MALLINFO */
 | |
| #ifndef MALLINFO_FIELD_TYPE
 | |
| #define MALLINFO_FIELD_TYPE size_t
 | |
| #endif  /* MALLINFO_FIELD_TYPE */
 | |
| #ifndef NO_SEGMENT_TRAVERSAL
 | |
| #define NO_SEGMENT_TRAVERSAL 0
 | |
| #endif /* NO_SEGMENT_TRAVERSAL */
 | |
| 
 | |
| /*
 | |
|   mallopt tuning options.  SVID/XPG defines four standard parameter
 | |
|   numbers for mallopt, normally defined in malloc.h.  None of these
 | |
|   are used in this malloc, so setting them has no effect. But this
 | |
|   malloc does support the following options.
 | |
| */
 | |
| 
 | |
| #define M_TRIM_THRESHOLD     (-1)
 | |
| #define M_GRANULARITY        (-2)
 | |
| #define M_MMAP_THRESHOLD     (-3)
 | |
| 
 | |
| /* ------------------------ Mallinfo declarations ------------------------ */
 | |
| 
 | |
| #if !NO_MALLINFO
 | |
| /*
 | |
|   This version of malloc supports the standard SVID/XPG mallinfo
 | |
|   routine that returns a struct containing usage properties and
 | |
|   statistics. It should work on any system that has a
 | |
|   /usr/include/malloc.h defining struct mallinfo.  The main
 | |
|   declaration needed is the mallinfo struct that is returned (by-copy)
 | |
|   by mallinfo().  The malloinfo struct contains a bunch of fields that
 | |
|   are not even meaningful in this version of malloc.  These fields are
 | |
|   are instead filled by mallinfo() with other numbers that might be of
 | |
|   interest.
 | |
| 
 | |
|   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
 | |
|   /usr/include/malloc.h file that includes a declaration of struct
 | |
|   mallinfo.  If so, it is included; else a compliant version is
 | |
|   declared below.  These must be precisely the same for mallinfo() to
 | |
|   work.  The original SVID version of this struct, defined on most
 | |
|   systems with mallinfo, declares all fields as ints. But some others
 | |
|   define as unsigned long. If your system defines the fields using a
 | |
|   type of different width than listed here, you MUST #include your
 | |
|   system version and #define HAVE_USR_INCLUDE_MALLOC_H.
 | |
| */
 | |
| 
 | |
| /* #define HAVE_USR_INCLUDE_MALLOC_H */
 | |
| 
 | |
| #ifdef HAVE_USR_INCLUDE_MALLOC_H
 | |
| #include "/usr/include/malloc.h"
 | |
| #else /* HAVE_USR_INCLUDE_MALLOC_H */
 | |
| #ifndef STRUCT_MALLINFO_DECLARED
 | |
| #define STRUCT_MALLINFO_DECLARED 1
 | |
| struct mallinfo {
 | |
|   MALLINFO_FIELD_TYPE arena;    /* non-mmapped space allocated from system */
 | |
|   MALLINFO_FIELD_TYPE ordblks;  /* number of free chunks */
 | |
|   MALLINFO_FIELD_TYPE smblks;   /* always 0 */
 | |
|   MALLINFO_FIELD_TYPE hblks;    /* always 0 */
 | |
|   MALLINFO_FIELD_TYPE hblkhd;   /* space in mmapped regions */
 | |
|   MALLINFO_FIELD_TYPE usmblks;  /* maximum total allocated space */
 | |
|   MALLINFO_FIELD_TYPE fsmblks;  /* always 0 */
 | |
|   MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
 | |
|   MALLINFO_FIELD_TYPE fordblks; /* total free space */
 | |
|   MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
 | |
| };
 | |
| #endif /* STRUCT_MALLINFO_DECLARED */
 | |
| #endif /* HAVE_USR_INCLUDE_MALLOC_H */
 | |
| #endif /* NO_MALLINFO */
 | |
| 
 | |
| /*
 | |
|   Try to persuade compilers to inline. The most critical functions for
 | |
|   inlining are defined as macros, so these aren't used for them.
 | |
| */
 | |
| 
 | |
| #ifdef __MINGW64_VERSION_MAJOR
 | |
| #undef FORCEINLINE
 | |
| #endif
 | |
| #ifndef FORCEINLINE
 | |
|   #if defined(__GNUC__)
 | |
| #define FORCEINLINE __inline __attribute__ ((always_inline))
 | |
|   #elif defined(_MSC_VER)
 | |
|     #define FORCEINLINE __forceinline
 | |
|   #endif
 | |
| #endif
 | |
| #ifndef NOINLINE
 | |
|   #if defined(__GNUC__)
 | |
|     #define NOINLINE __attribute__ ((noinline))
 | |
|   #elif defined(_MSC_VER)
 | |
|     #define NOINLINE __declspec(noinline)
 | |
|   #else
 | |
|     #define NOINLINE
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #ifndef FORCEINLINE
 | |
|  #define FORCEINLINE inline
 | |
| #endif
 | |
| #endif /* __cplusplus */
 | |
| #ifndef FORCEINLINE
 | |
|  #define FORCEINLINE
 | |
| #endif
 | |
| 
 | |
| #if !ONLY_MSPACES
 | |
| 
 | |
| /* ------------------- Declarations of public routines ------------------- */
 | |
| 
 | |
| #ifndef USE_DL_PREFIX
 | |
| #define dlcalloc               calloc
 | |
| #define dlfree                 free
 | |
| #define dlmalloc               malloc
 | |
| #define dlmemalign             memalign
 | |
| #define dlrealloc              realloc
 | |
| #define dlvalloc               valloc
 | |
| #define dlpvalloc              pvalloc
 | |
| #define dlmallinfo             mallinfo
 | |
| #define dlmallopt              mallopt
 | |
| #define dlmalloc_trim          malloc_trim
 | |
| #define dlmalloc_stats         malloc_stats
 | |
| #define dlmalloc_usable_size   malloc_usable_size
 | |
| #define dlmalloc_footprint     malloc_footprint
 | |
| #define dlmalloc_max_footprint malloc_max_footprint
 | |
| #define dlindependent_calloc   independent_calloc
 | |
| #define dlindependent_comalloc independent_comalloc
 | |
| #endif /* USE_DL_PREFIX */
 | |
| 
 | |
| 
 | |
| /*
 | |
|   malloc(size_t n)
 | |
|   Returns a pointer to a newly allocated chunk of at least n bytes, or
 | |
|   null if no space is available, in which case errno is set to ENOMEM
 | |
|   on ANSI C systems.
 | |
| 
 | |
|   If n is zero, malloc returns a minimum-sized chunk. (The minimum
 | |
|   size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
 | |
|   systems.)  Note that size_t is an unsigned type, so calls with
 | |
|   arguments that would be negative if signed are interpreted as
 | |
|   requests for huge amounts of space, which will often fail. The
 | |
|   maximum supported value of n differs across systems, but is in all
 | |
|   cases less than the maximum representable value of a size_t.
 | |
| */
 | |
| void* dlmalloc(size_t);
 | |
| 
 | |
| /*
 | |
|   free(void* p)
 | |
|   Releases the chunk of memory pointed to by p, that had been previously
 | |
|   allocated using malloc or a related routine such as realloc.
 | |
|   It has no effect if p is null. If p was not malloced or already
 | |
|   freed, free(p) will by default cause the current program to abort.
 | |
| */
 | |
| void  dlfree(void*);
 | |
| 
 | |
| /*
 | |
|   calloc(size_t n_elements, size_t element_size);
 | |
|   Returns a pointer to n_elements * element_size bytes, with all locations
 | |
|   set to zero.
 | |
| */
 | |
| void* dlcalloc(size_t, size_t);
 | |
| 
 | |
| /*
 | |
|   realloc(void* p, size_t n)
 | |
|   Returns a pointer to a chunk of size n that contains the same data
 | |
|   as does chunk p up to the minimum of (n, p's size) bytes, or null
 | |
|   if no space is available.
 | |
| 
 | |
|   The returned pointer may or may not be the same as p. The algorithm
 | |
|   prefers extending p in most cases when possible, otherwise it
 | |
|   employs the equivalent of a malloc-copy-free sequence.
 | |
| 
 | |
|   If p is null, realloc is equivalent to malloc.
 | |
| 
 | |
|   If space is not available, realloc returns null, errno is set (if on
 | |
|   ANSI) and p is NOT freed.
 | |
| 
 | |
|   if n is for fewer bytes than already held by p, the newly unused
 | |
|   space is lopped off and freed if possible.  realloc with a size
 | |
|   argument of zero (re)allocates a minimum-sized chunk.
 | |
| 
 | |
|   The old unix realloc convention of allowing the last-free'd chunk
 | |
|   to be used as an argument to realloc is not supported.
 | |
| */
 | |
| 
 | |
| void* dlrealloc(void*, size_t);
 | |
| 
 | |
| /*
 | |
|   memalign(size_t alignment, size_t n);
 | |
|   Returns a pointer to a newly allocated chunk of n bytes, aligned
 | |
|   in accord with the alignment argument.
 | |
| 
 | |
|   The alignment argument should be a power of two. If the argument is
 | |
|   not a power of two, the nearest greater power is used.
 | |
|   8-byte alignment is guaranteed by normal malloc calls, so don't
 | |
|   bother calling memalign with an argument of 8 or less.
 | |
| 
 | |
|   Overreliance on memalign is a sure way to fragment space.
 | |
| */
 | |
| void* dlmemalign(size_t, size_t);
 | |
| 
 | |
| /*
 | |
|   valloc(size_t n);
 | |
|   Equivalent to memalign(pagesize, n), where pagesize is the page
 | |
|   size of the system. If the pagesize is unknown, 4096 is used.
 | |
| */
 | |
| void* dlvalloc(size_t);
 | |
| 
 | |
| /*
 | |
|   mallopt(int parameter_number, int parameter_value)
 | |
|   Sets tunable parameters The format is to provide a
 | |
|   (parameter-number, parameter-value) pair.  mallopt then sets the
 | |
|   corresponding parameter to the argument value if it can (i.e., so
 | |
|   long as the value is meaningful), and returns 1 if successful else
 | |
|   0.  To workaround the fact that mallopt is specified to use int,
 | |
|   not size_t parameters, the value -1 is specially treated as the
 | |
|   maximum unsigned size_t value.
 | |
| 
 | |
|   SVID/XPG/ANSI defines four standard param numbers for mallopt,
 | |
|   normally defined in malloc.h.  None of these are use in this malloc,
 | |
|   so setting them has no effect. But this malloc also supports other
 | |
|   options in mallopt. See below for details.  Briefly, supported
 | |
|   parameters are as follows (listed defaults are for "typical"
 | |
|   configurations).
 | |
| 
 | |
|   Symbol            param #  default    allowed param values
 | |
|   M_TRIM_THRESHOLD     -1   2*1024*1024   any   (-1 disables)
 | |
|   M_GRANULARITY        -2     page size   any power of 2 >= page size
 | |
|   M_MMAP_THRESHOLD     -3      256*1024   any   (or 0 if no MMAP support)
 | |
| */
 | |
| int dlmallopt(int, int);
 | |
| 
 | |
| /*
 | |
|   malloc_footprint();
 | |
|   Returns the number of bytes obtained from the system.  The total
 | |
|   number of bytes allocated by malloc, realloc etc., is less than this
 | |
|   value. Unlike mallinfo, this function returns only a precomputed
 | |
|   result, so can be called frequently to monitor memory consumption.
 | |
|   Even if locks are otherwise defined, this function does not use them,
 | |
|   so results might not be up to date.
 | |
| */
 | |
| size_t dlmalloc_footprint(void);
 | |
| 
 | |
| /*
 | |
|   malloc_max_footprint();
 | |
|   Returns the maximum number of bytes obtained from the system. This
 | |
|   value will be greater than current footprint if deallocated space
 | |
|   has been reclaimed by the system. The peak number of bytes allocated
 | |
|   by malloc, realloc etc., is less than this value. Unlike mallinfo,
 | |
|   this function returns only a precomputed result, so can be called
 | |
|   frequently to monitor memory consumption.  Even if locks are
 | |
|   otherwise defined, this function does not use them, so results might
 | |
|   not be up to date.
 | |
| */
 | |
| size_t dlmalloc_max_footprint(void);
 | |
| 
 | |
| #if !NO_MALLINFO
 | |
| /*
 | |
|   mallinfo()
 | |
|   Returns (by copy) a struct containing various summary statistics:
 | |
| 
 | |
|   arena:     current total non-mmapped bytes allocated from system
 | |
|   ordblks:   the number of free chunks
 | |
|   smblks:    always zero.
 | |
|   hblks:     current number of mmapped regions
 | |
|   hblkhd:    total bytes held in mmapped regions
 | |
|   usmblks:   the maximum total allocated space. This will be greater
 | |
| 		than current total if trimming has occurred.
 | |
|   fsmblks:   always zero
 | |
|   uordblks:  current total allocated space (normal or mmapped)
 | |
|   fordblks:  total free space
 | |
|   keepcost:  the maximum number of bytes that could ideally be released
 | |
| 	       back to system via malloc_trim. ("ideally" means that
 | |
| 	       it ignores page restrictions etc.)
 | |
| 
 | |
|   Because these fields are ints, but internal bookkeeping may
 | |
|   be kept as longs, the reported values may wrap around zero and
 | |
|   thus be inaccurate.
 | |
| */
 | |
| struct mallinfo dlmallinfo(void);
 | |
| #endif /* NO_MALLINFO */
 | |
| 
 | |
| /*
 | |
|   independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
 | |
| 
 | |
|   independent_calloc is similar to calloc, but instead of returning a
 | |
|   single cleared space, it returns an array of pointers to n_elements
 | |
|   independent elements that can hold contents of size elem_size, each
 | |
|   of which starts out cleared, and can be independently freed,
 | |
|   realloc'ed etc. The elements are guaranteed to be adjacently
 | |
|   allocated (this is not guaranteed to occur with multiple callocs or
 | |
|   mallocs), which may also improve cache locality in some
 | |
|   applications.
 | |
| 
 | |
|   The "chunks" argument is optional (i.e., may be null, which is
 | |
|   probably the most typical usage). If it is null, the returned array
 | |
|   is itself dynamically allocated and should also be freed when it is
 | |
|   no longer needed. Otherwise, the chunks array must be of at least
 | |
|   n_elements in length. It is filled in with the pointers to the
 | |
|   chunks.
 | |
| 
 | |
|   In either case, independent_calloc returns this pointer array, or
 | |
|   null if the allocation failed.  If n_elements is zero and "chunks"
 | |
|   is null, it returns a chunk representing an array with zero elements
 | |
|   (which should be freed if not wanted).
 | |
| 
 | |
|   Each element must be individually freed when it is no longer
 | |
|   needed. If you'd like to instead be able to free all at once, you
 | |
|   should instead use regular calloc and assign pointers into this
 | |
|   space to represent elements.  (In this case though, you cannot
 | |
|   independently free elements.)
 | |
| 
 | |
|   independent_calloc simplifies and speeds up implementations of many
 | |
|   kinds of pools.  It may also be useful when constructing large data
 | |
|   structures that initially have a fixed number of fixed-sized nodes,
 | |
|   but the number is not known at compile time, and some of the nodes
 | |
|   may later need to be freed. For example:
 | |
| 
 | |
|   struct Node { int item; struct Node* next; };
 | |
| 
 | |
|   struct Node* build_list() {
 | |
|     struct Node** pool;
 | |
|     int n = read_number_of_nodes_needed();
 | |
|     if (n <= 0) return 0;
 | |
|     pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
 | |
|     if (pool == 0) die();
 | |
|     // organize into a linked list...
 | |
|     struct Node* first = pool[0];
 | |
|     for (i = 0; i < n-1; ++i)
 | |
|       pool[i]->next = pool[i+1];
 | |
|     free(pool);     // Can now free the array (or not, if it is needed later)
 | |
|     return first;
 | |
|   }
 | |
| */
 | |
| void** dlindependent_calloc(size_t, size_t, void**);
 | |
| 
 | |
| /*
 | |
|   independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
 | |
| 
 | |
|   independent_comalloc allocates, all at once, a set of n_elements
 | |
|   chunks with sizes indicated in the "sizes" array.    It returns
 | |
|   an array of pointers to these elements, each of which can be
 | |
|   independently freed, realloc'ed etc. The elements are guaranteed to
 | |
|   be adjacently allocated (this is not guaranteed to occur with
 | |
|   multiple callocs or mallocs), which may also improve cache locality
 | |
|   in some applications.
 | |
| 
 | |
|   The "chunks" argument is optional (i.e., may be null). If it is null
 | |
|   the returned array is itself dynamically allocated and should also
 | |
|   be freed when it is no longer needed. Otherwise, the chunks array
 | |
|   must be of at least n_elements in length. It is filled in with the
 | |
|   pointers to the chunks.
 | |
| 
 | |
|   In either case, independent_comalloc returns this pointer array, or
 | |
|   null if the allocation failed.  If n_elements is zero and chunks is
 | |
|   null, it returns a chunk representing an array with zero elements
 | |
|   (which should be freed if not wanted).
 | |
| 
 | |
|   Each element must be individually freed when it is no longer
 | |
|   needed. If you'd like to instead be able to free all at once, you
 | |
|   should instead use a single regular malloc, and assign pointers at
 | |
|   particular offsets in the aggregate space. (In this case though, you
 | |
|   cannot independently free elements.)
 | |
| 
 | |
|   independent_comallac differs from independent_calloc in that each
 | |
|   element may have a different size, and also that it does not
 | |
|   automatically clear elements.
 | |
| 
 | |
|   independent_comalloc can be used to speed up allocation in cases
 | |
|   where several structs or objects must always be allocated at the
 | |
|   same time.  For example:
 | |
| 
 | |
|   struct Head { ... }
 | |
|   struct Foot { ... }
 | |
| 
 | |
|   void send_message(char* msg) {
 | |
|     int msglen = strlen(msg);
 | |
|     size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
 | |
|     void* chunks[3];
 | |
|     if (independent_comalloc(3, sizes, chunks) == 0)
 | |
|       die();
 | |
|     struct Head* head = (struct Head*)(chunks[0]);
 | |
|     char*        body = (char*)(chunks[1]);
 | |
|     struct Foot* foot = (struct Foot*)(chunks[2]);
 | |
|     // ...
 | |
|   }
 | |
| 
 | |
|   In general though, independent_comalloc is worth using only for
 | |
|   larger values of n_elements. For small values, you probably won't
 | |
|   detect enough difference from series of malloc calls to bother.
 | |
| 
 | |
|   Overuse of independent_comalloc can increase overall memory usage,
 | |
|   since it cannot reuse existing noncontiguous small chunks that
 | |
|   might be available for some of the elements.
 | |
| */
 | |
| void** dlindependent_comalloc(size_t, size_t*, void**);
 | |
| 
 | |
| 
 | |
| /*
 | |
|   pvalloc(size_t n);
 | |
|   Equivalent to valloc(minimum-page-that-holds(n)), that is,
 | |
|   round up n to nearest pagesize.
 | |
|  */
 | |
| void*  dlpvalloc(size_t);
 | |
| 
 | |
| /*
 | |
|   malloc_trim(size_t pad);
 | |
| 
 | |
|   If possible, gives memory back to the system (via negative arguments
 | |
|   to sbrk) if there is unused memory at the `high' end of the malloc
 | |
|   pool or in unused MMAP segments. You can call this after freeing
 | |
|   large blocks of memory to potentially reduce the system-level memory
 | |
|   requirements of a program. However, it cannot guarantee to reduce
 | |
|   memory. Under some allocation patterns, some large free blocks of
 | |
|   memory will be locked between two used chunks, so they cannot be
 | |
|   given back to the system.
 | |
| 
 | |
|   The `pad' argument to malloc_trim represents the amount of free
 | |
|   trailing space to leave untrimmed. If this argument is zero, only
 | |
|   the minimum amount of memory to maintain internal data structures
 | |
|   will be left. Non-zero arguments can be supplied to maintain enough
 | |
|   trailing space to service future expected allocations without having
 | |
|   to re-obtain memory from the system.
 | |
| 
 | |
|   Malloc_trim returns 1 if it actually released any memory, else 0.
 | |
| */
 | |
| int  dlmalloc_trim(size_t);
 | |
| 
 | |
| /*
 | |
|   malloc_stats();
 | |
|   Prints on stderr the amount of space obtained from the system (both
 | |
|   via sbrk and mmap), the maximum amount (which may be more than
 | |
|   current if malloc_trim and/or munmap got called), and the current
 | |
|   number of bytes allocated via malloc (or realloc, etc) but not yet
 | |
|   freed. Note that this is the number of bytes allocated, not the
 | |
|   number requested. It will be larger than the number requested
 | |
|   because of alignment and bookkeeping overhead. Because it includes
 | |
|   alignment wastage as being in use, this figure may be greater than
 | |
|   zero even when no user-level chunks are allocated.
 | |
| 
 | |
|   The reported current and maximum system memory can be inaccurate if
 | |
|   a program makes other calls to system memory allocation functions
 | |
|   (normally sbrk) outside of malloc.
 | |
| 
 | |
|   malloc_stats prints only the most commonly interesting statistics.
 | |
|   More information can be obtained by calling mallinfo.
 | |
| */
 | |
| void  dlmalloc_stats(void);
 | |
| 
 | |
| #endif /* ONLY_MSPACES */
 | |
| 
 | |
| /*
 | |
|   malloc_usable_size(void* p);
 | |
| 
 | |
|   Returns the number of bytes you can actually use in
 | |
|   an allocated chunk, which may be more than you requested (although
 | |
|   often not) due to alignment and minimum size constraints.
 | |
|   You can use this many bytes without worrying about
 | |
|   overwriting other allocated objects. This is not a particularly great
 | |
|   programming practice. malloc_usable_size can be more useful in
 | |
|   debugging and assertions, for example:
 | |
| 
 | |
|   p = malloc(n);
 | |
|   assert(malloc_usable_size(p) >= 256);
 | |
| */
 | |
| size_t dlmalloc_usable_size(void*);
 | |
| 
 | |
| 
 | |
| #if MSPACES
 | |
| 
 | |
| /*
 | |
|   mspace is an opaque type representing an independent
 | |
|   region of space that supports mspace_malloc, etc.
 | |
| */
 | |
| typedef void* mspace;
 | |
| 
 | |
| /*
 | |
|   create_mspace creates and returns a new independent space with the
 | |
|   given initial capacity, or, if 0, the default granularity size.  It
 | |
|   returns null if there is no system memory available to create the
 | |
|   space.  If argument locked is non-zero, the space uses a separate
 | |
|   lock to control access. The capacity of the space will grow
 | |
|   dynamically as needed to service mspace_malloc requests.  You can
 | |
|   control the sizes of incremental increases of this space by
 | |
|   compiling with a different DEFAULT_GRANULARITY or dynamically
 | |
|   setting with mallopt(M_GRANULARITY, value).
 | |
| */
 | |
| mspace create_mspace(size_t capacity, int locked);
 | |
| 
 | |
| /*
 | |
|   destroy_mspace destroys the given space, and attempts to return all
 | |
|   of its memory back to the system, returning the total number of
 | |
|   bytes freed. After destruction, the results of access to all memory
 | |
|   used by the space become undefined.
 | |
| */
 | |
| size_t destroy_mspace(mspace msp);
 | |
| 
 | |
| /*
 | |
|   create_mspace_with_base uses the memory supplied as the initial base
 | |
|   of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
 | |
|   space is used for bookkeeping, so the capacity must be at least this
 | |
|   large. (Otherwise 0 is returned.) When this initial space is
 | |
|   exhausted, additional memory will be obtained from the system.
 | |
|   Destroying this space will deallocate all additionally allocated
 | |
|   space (if possible) but not the initial base.
 | |
| */
 | |
| mspace create_mspace_with_base(void* base, size_t capacity, int locked);
 | |
| 
 | |
| /*
 | |
|   mspace_mmap_large_chunks controls whether requests for large chunks
 | |
|   are allocated in their own mmapped regions, separate from others in
 | |
|   this mspace. By default this is enabled, which reduces
 | |
|   fragmentation. However, such chunks are not necessarily released to
 | |
|   the system upon destroy_mspace.  Disabling by setting to false may
 | |
|   increase fragmentation, but avoids leakage when relying on
 | |
|   destroy_mspace to release all memory allocated using this space.
 | |
| */
 | |
| int mspace_mmap_large_chunks(mspace msp, int enable);
 | |
| 
 | |
| 
 | |
| /*
 | |
|   mspace_malloc behaves as malloc, but operates within
 | |
|   the given space.
 | |
| */
 | |
| void* mspace_malloc(mspace msp, size_t bytes);
 | |
| 
 | |
| /*
 | |
|   mspace_free behaves as free, but operates within
 | |
|   the given space.
 | |
| 
 | |
|   If compiled with FOOTERS==1, mspace_free is not actually needed.
 | |
|   free may be called instead of mspace_free because freed chunks from
 | |
|   any space are handled by their originating spaces.
 | |
| */
 | |
| void mspace_free(mspace msp, void* mem);
 | |
| 
 | |
| /*
 | |
|   mspace_realloc behaves as realloc, but operates within
 | |
|   the given space.
 | |
| 
 | |
|   If compiled with FOOTERS==1, mspace_realloc is not actually
 | |
|   needed.  realloc may be called instead of mspace_realloc because
 | |
|   realloced chunks from any space are handled by their originating
 | |
|   spaces.
 | |
| */
 | |
| void* mspace_realloc(mspace msp, void* mem, size_t newsize);
 | |
| 
 | |
| /*
 | |
|   mspace_calloc behaves as calloc, but operates within
 | |
|   the given space.
 | |
| */
 | |
| void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
 | |
| 
 | |
| /*
 | |
|   mspace_memalign behaves as memalign, but operates within
 | |
|   the given space.
 | |
| */
 | |
| void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
 | |
| 
 | |
| /*
 | |
|   mspace_independent_calloc behaves as independent_calloc, but
 | |
|   operates within the given space.
 | |
| */
 | |
| void** mspace_independent_calloc(mspace msp, size_t n_elements,
 | |
| 				 size_t elem_size, void* chunks[]);
 | |
| 
 | |
| /*
 | |
|   mspace_independent_comalloc behaves as independent_comalloc, but
 | |
|   operates within the given space.
 | |
| */
 | |
| void** mspace_independent_comalloc(mspace msp, size_t n_elements,
 | |
| 				   size_t sizes[], void* chunks[]);
 | |
| 
 | |
| /*
 | |
|   mspace_footprint() returns the number of bytes obtained from the
 | |
|   system for this space.
 | |
| */
 | |
| size_t mspace_footprint(mspace msp);
 | |
| 
 | |
| /*
 | |
|   mspace_max_footprint() returns the peak number of bytes obtained from the
 | |
|   system for this space.
 | |
| */
 | |
| size_t mspace_max_footprint(mspace msp);
 | |
| 
 | |
| 
 | |
| #if !NO_MALLINFO
 | |
| /*
 | |
|   mspace_mallinfo behaves as mallinfo, but reports properties of
 | |
|   the given space.
 | |
| */
 | |
| struct mallinfo mspace_mallinfo(mspace msp);
 | |
| #endif /* NO_MALLINFO */
 | |
| 
 | |
| /*
 | |
|   malloc_usable_size(void* p) behaves the same as malloc_usable_size;
 | |
| */
 | |
|   size_t mspace_usable_size(void* mem);
 | |
| 
 | |
| /*
 | |
|   mspace_malloc_stats behaves as malloc_stats, but reports
 | |
|   properties of the given space.
 | |
| */
 | |
| void mspace_malloc_stats(mspace msp);
 | |
| 
 | |
| /*
 | |
|   mspace_trim behaves as malloc_trim, but
 | |
|   operates within the given space.
 | |
| */
 | |
| int mspace_trim(mspace msp, size_t pad);
 | |
| 
 | |
| /*
 | |
|   An alias for mallopt.
 | |
| */
 | |
| int mspace_mallopt(int, int);
 | |
| 
 | |
| #endif /* MSPACES */
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| };  /* end of extern "C" */
 | |
| #endif /* __cplusplus */
 | |
| 
 | |
| /*
 | |
|   ========================================================================
 | |
|   To make a fully customizable malloc.h header file, cut everything
 | |
|   above this line, put into file malloc.h, edit to suit, and #include it
 | |
|   on the next line, as well as in programs that use this malloc.
 | |
|   ========================================================================
 | |
| */
 | |
| 
 | |
| /* #include "malloc.h" */
 | |
| 
 | |
| /*------------------------------ internal #includes ---------------------- */
 | |
| 
 | |
| #ifdef WIN32
 | |
| #ifndef __GNUC__
 | |
| #pragma warning( disable : 4146 ) /* no "unsigned" warnings */
 | |
| #endif
 | |
| #endif /* WIN32 */
 | |
| 
 | |
| #include <stdio.h>       /* for printing in malloc_stats */
 | |
| 
 | |
| #ifndef LACKS_ERRNO_H
 | |
| #include <errno.h>       /* for MALLOC_FAILURE_ACTION */
 | |
| #endif /* LACKS_ERRNO_H */
 | |
| #if FOOTERS
 | |
| #include <time.h>        /* for magic initialization */
 | |
| #endif /* FOOTERS */
 | |
| #ifndef LACKS_STDLIB_H
 | |
| #include <stdlib.h>      /* for abort() */
 | |
| #endif /* LACKS_STDLIB_H */
 | |
| #ifdef DEBUG
 | |
| #if ABORT_ON_ASSERT_FAILURE
 | |
| #define assert(x) if(!(x)) ABORT
 | |
| #else /* ABORT_ON_ASSERT_FAILURE */
 | |
| #include <assert.h>
 | |
| #endif /* ABORT_ON_ASSERT_FAILURE */
 | |
| #else  /* DEBUG */
 | |
| #ifndef assert
 | |
| #define assert(x)
 | |
| #endif
 | |
| #define DEBUG 0
 | |
| #endif /* DEBUG */
 | |
| #ifndef LACKS_STRING_H
 | |
| #include <string.h>      /* for memset etc */
 | |
| #endif  /* LACKS_STRING_H */
 | |
| #if USE_BUILTIN_FFS
 | |
| #ifndef LACKS_STRINGS_H
 | |
| #include <strings.h>     /* for ffs */
 | |
| #endif /* LACKS_STRINGS_H */
 | |
| #endif /* USE_BUILTIN_FFS */
 | |
| #if HAVE_MMAP
 | |
| #ifndef LACKS_SYS_MMAN_H
 | |
| #include <sys/mman.h>    /* for mmap */
 | |
| #endif /* LACKS_SYS_MMAN_H */
 | |
| #ifndef LACKS_FCNTL_H
 | |
| #include <fcntl.h>
 | |
| #endif /* LACKS_FCNTL_H */
 | |
| #endif /* HAVE_MMAP */
 | |
| #ifndef LACKS_UNISTD_H
 | |
| #include <unistd.h>     /* for sbrk, sysconf */
 | |
| #else /* LACKS_UNISTD_H */
 | |
| #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
 | |
| extern void*     sbrk(ptrdiff_t);
 | |
| #endif /* FreeBSD etc */
 | |
| #endif /* LACKS_UNISTD_H */
 | |
| 
 | |
| /* Declarations for locking */
 | |
| #if USE_LOCKS
 | |
| #ifndef WIN32
 | |
| #include <pthread.h>
 | |
| #if defined (__SVR4) && defined (__sun)  /* solaris */
 | |
| #include <thread.h>
 | |
| #endif /* solaris */
 | |
| #else
 | |
| #ifndef _M_AMD64
 | |
| /* These are already defined on AMD64 builds */
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif /* __cplusplus */
 | |
| #ifndef __MINGW32__
 | |
| LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp);
 | |
| LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value);
 | |
| #endif
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif /* __cplusplus */
 | |
| #endif /* _M_AMD64 */
 | |
| #ifndef __MINGW32__
 | |
| #pragma intrinsic (_InterlockedCompareExchange)
 | |
| #pragma intrinsic (_InterlockedExchange)
 | |
| #else
 | |
|   /* --[ start GCC compatibility ]----------------------------------------------
 | |
|    * Compatibility <intrin_x86.h> header for GCC -- GCC equivalents of intrinsic
 | |
|    * Microsoft Visual C++ functions. Originally developed for the ReactOS
 | |
|    * (<http://www.reactos.org/>) and TinyKrnl (<http://www.tinykrnl.org/>)
 | |
|    * projects.
 | |
|    *
 | |
|    * Copyright (c) 2006 KJK::Hyperion <hackbunny@reactos.com>
 | |
|    *
 | |
|    * Permission is hereby granted, free of charge, to any person obtaining a
 | |
|    * copy of this software and associated documentation files (the "Software"),
 | |
|    * to deal in the Software without restriction, including without limitation
 | |
|    * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 | |
|    * and/or sell copies of the Software, and to permit persons to whom the
 | |
|    * Software is furnished to do so, subject to the following conditions:
 | |
|    *
 | |
|    * The above copyright notice and this permission notice shall be included in
 | |
|    * all copies or substantial portions of the Software.
 | |
|    *
 | |
|    * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|    * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|    * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
|    * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|    * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 | |
|    * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 | |
|    * DEALINGS IN THE SOFTWARE.
 | |
|    */
 | |
| 
 | |
|   /*** Atomic operations ***/
 | |
|   #if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) > 40100
 | |
|     #undef _ReadWriteBarrier
 | |
|     #define _ReadWriteBarrier() __sync_synchronize()
 | |
|   #else
 | |
|     static __inline__ __attribute__((always_inline)) long __sync_lock_test_and_set(volatile long * const Target, const long Value)
 | |
|     {
 | |
|       long res;
 | |
|       __asm__ __volatile__("xchg%z0 %2, %0" : "=g" (*(Target)), "=r" (res) : "1" (Value));
 | |
|       return res;
 | |
|     }
 | |
|     static void __inline__ __attribute__((always_inline)) _MemoryBarrier(void)
 | |
|     {
 | |
|       __asm__ __volatile__("" : : : "memory");
 | |
|     }
 | |
|     #define _ReadWriteBarrier() _MemoryBarrier()
 | |
|   #endif
 | |
|   /* BUGBUG: GCC only supports full barriers */
 | |
|   static __inline__ __attribute__((always_inline)) long _InterlockedExchange(volatile long * const Target, const long Value)
 | |
|   {
 | |
|     /* NOTE: __sync_lock_test_and_set would be an acquire barrier, so we force a full barrier */
 | |
|     _ReadWriteBarrier();
 | |
|     return __sync_lock_test_and_set(Target, Value);
 | |
|   }
 | |
|   /* --[ end GCC compatibility ]---------------------------------------------- */
 | |
| #endif
 | |
| #define interlockedcompareexchange _InterlockedCompareExchange
 | |
| #define interlockedexchange _InterlockedExchange
 | |
| #endif /* Win32 */
 | |
| #endif /* USE_LOCKS */
 | |
| 
 | |
| /* Declarations for bit scanning on win32 */
 | |
| #if defined(_MSC_VER) && _MSC_VER>=1300
 | |
| #ifndef BitScanForward	/* Try to avoid pulling in WinNT.h */
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif /* __cplusplus */
 | |
| unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
 | |
| unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif /* __cplusplus */
 | |
| 
 | |
| #define BitScanForward _BitScanForward
 | |
| #define BitScanReverse _BitScanReverse
 | |
| #pragma intrinsic(_BitScanForward)
 | |
| #pragma intrinsic(_BitScanReverse)
 | |
| #endif /* BitScanForward */
 | |
| #endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
 | |
| 
 | |
| #ifndef WIN32
 | |
| #ifndef malloc_getpagesize
 | |
| #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
 | |
| #    ifndef _SC_PAGE_SIZE
 | |
| #      define _SC_PAGE_SIZE _SC_PAGESIZE
 | |
| #    endif
 | |
| #  endif
 | |
| #  ifdef _SC_PAGE_SIZE
 | |
| #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
 | |
| #  else
 | |
| #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
 | |
|        extern size_t getpagesize();
 | |
| #      define malloc_getpagesize getpagesize()
 | |
| #    else
 | |
| #      ifdef WIN32 /* use supplied emulation of getpagesize */
 | |
| #        define malloc_getpagesize getpagesize()
 | |
| #      else
 | |
| #        ifndef LACKS_SYS_PARAM_H
 | |
| #          include <sys/param.h>
 | |
| #        endif
 | |
| #        ifdef EXEC_PAGESIZE
 | |
| #          define malloc_getpagesize EXEC_PAGESIZE
 | |
| #        else
 | |
| #          ifdef NBPG
 | |
| #            ifndef CLSIZE
 | |
| #              define malloc_getpagesize NBPG
 | |
| #            else
 | |
| #              define malloc_getpagesize (NBPG * CLSIZE)
 | |
| #            endif
 | |
| #          else
 | |
| #            ifdef NBPC
 | |
| #              define malloc_getpagesize NBPC
 | |
| #            else
 | |
| #              ifdef PAGESIZE
 | |
| #                define malloc_getpagesize PAGESIZE
 | |
| #              else /* just guess */
 | |
| #                define malloc_getpagesize ((size_t)4096U)
 | |
| #              endif
 | |
| #            endif
 | |
| #          endif
 | |
| #        endif
 | |
| #      endif
 | |
| #    endif
 | |
| #  endif
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| /* ------------------- size_t and alignment properties -------------------- */
 | |
| 
 | |
| /* The byte and bit size of a size_t */
 | |
| #define SIZE_T_SIZE         (sizeof(size_t))
 | |
| #define SIZE_T_BITSIZE      (sizeof(size_t) << 3)
 | |
| 
 | |
| /* Some constants coerced to size_t */
 | |
| /* Annoying but necessary to avoid errors on some platforms */
 | |
| #define SIZE_T_ZERO         ((size_t)0)
 | |
| #define SIZE_T_ONE          ((size_t)1)
 | |
| #define SIZE_T_TWO          ((size_t)2)
 | |
| #define SIZE_T_FOUR         ((size_t)4)
 | |
| #define TWO_SIZE_T_SIZES    (SIZE_T_SIZE<<1)
 | |
| #define FOUR_SIZE_T_SIZES   (SIZE_T_SIZE<<2)
 | |
| #define SIX_SIZE_T_SIZES    (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
 | |
| #define HALF_MAX_SIZE_T     (MAX_SIZE_T / 2U)
 | |
| 
 | |
| /* The bit mask value corresponding to MALLOC_ALIGNMENT */
 | |
| #define CHUNK_ALIGN_MASK    (MALLOC_ALIGNMENT - SIZE_T_ONE)
 | |
| 
 | |
| /* True if address a has acceptable alignment */
 | |
| #define is_aligned(A)       (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
 | |
| 
 | |
| /* the number of bytes to offset an address to align it */
 | |
| #define align_offset(A)\
 | |
|  ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
 | |
|   ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
 | |
| 
 | |
| /* -------------------------- MMAP preliminaries ------------------------- */
 | |
| 
 | |
| /*
 | |
|    If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
 | |
|    checks to fail so compiler optimizer can delete code rather than
 | |
|    using so many "#if"s.
 | |
| */
 | |
| 
 | |
| 
 | |
| /* MORECORE and MMAP must return MFAIL on failure */
 | |
| #define MFAIL                ((void*)(MAX_SIZE_T))
 | |
| #define CMFAIL               ((char*)(MFAIL)) /* defined for convenience */
 | |
| 
 | |
| #if HAVE_MMAP
 | |
| 
 | |
| #ifndef WIN32
 | |
| #define MUNMAP_DEFAULT(a, s)  munmap((a), (s))
 | |
| #define MMAP_PROT            (PROT_READ|PROT_WRITE)
 | |
| #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
 | |
| #define MAP_ANONYMOUS        MAP_ANON
 | |
| #endif /* MAP_ANON */
 | |
| #ifdef MAP_ANONYMOUS
 | |
| #define MMAP_FLAGS           (MAP_PRIVATE|MAP_ANONYMOUS)
 | |
| #define MMAP_DEFAULT(s)       mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
 | |
| #else /* MAP_ANONYMOUS */
 | |
| /*
 | |
|    Nearly all versions of mmap support MAP_ANONYMOUS, so the following
 | |
|    is unlikely to be needed, but is supplied just in case.
 | |
| */
 | |
| #define MMAP_FLAGS           (MAP_PRIVATE)
 | |
| static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
 | |
| #define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \
 | |
| 	   (dev_zero_fd = open("/dev/zero", O_RDWR), \
 | |
| 	    mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
 | |
| 	    mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
 | |
| #endif /* MAP_ANONYMOUS */
 | |
| 
 | |
| #define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s)
 | |
| 
 | |
| #else /* WIN32 */
 | |
| 
 | |
| /* Win32 MMAP via VirtualAlloc */
 | |
| static FORCEINLINE void* win32mmap(size_t size) {
 | |
|   void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
 | |
|   return (ptr != 0)? ptr: MFAIL;
 | |
| }
 | |
| 
 | |
| /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
 | |
| static FORCEINLINE void* win32direct_mmap(size_t size) {
 | |
|   void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
 | |
| 			   PAGE_READWRITE);
 | |
|   return (ptr != 0)? ptr: MFAIL;
 | |
| }
 | |
| 
 | |
| /* This function supports releasing coalesced segments */
 | |
| static FORCEINLINE int win32munmap(void* ptr, size_t size) {
 | |
|   MEMORY_BASIC_INFORMATION minfo;
 | |
|   char* cptr = (char*)ptr;
 | |
|   while (size) {
 | |
|     if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
 | |
|       return -1;
 | |
|     if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
 | |
| 	minfo.State != MEM_COMMIT || minfo.RegionSize > size)
 | |
|       return -1;
 | |
|     if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
 | |
|       return -1;
 | |
|     cptr += minfo.RegionSize;
 | |
|     size -= minfo.RegionSize;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| #define MMAP_DEFAULT(s)             win32mmap(s)
 | |
| #define MUNMAP_DEFAULT(a, s)        win32munmap((a), (s))
 | |
| #define DIRECT_MMAP_DEFAULT(s)      win32direct_mmap(s)
 | |
| #endif /* WIN32 */
 | |
| #endif /* HAVE_MMAP */
 | |
| 
 | |
| #if HAVE_MREMAP
 | |
| #ifndef WIN32
 | |
| #define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
 | |
| #endif /* WIN32 */
 | |
| #endif /* HAVE_MREMAP */
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Define CALL_MORECORE
 | |
|  */
 | |
| #if HAVE_MORECORE
 | |
|     #ifdef MORECORE
 | |
| 	#define CALL_MORECORE(S)    MORECORE(S)
 | |
|     #else  /* MORECORE */
 | |
| 	#define CALL_MORECORE(S)    MORECORE_DEFAULT(S)
 | |
|     #endif /* MORECORE */
 | |
| #else  /* HAVE_MORECORE */
 | |
|     #define CALL_MORECORE(S)        MFAIL
 | |
| #endif /* HAVE_MORECORE */
 | |
| 
 | |
| /**
 | |
|  * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP
 | |
|  */
 | |
| #if HAVE_MMAP
 | |
|     #define IS_MMAPPED_BIT          (SIZE_T_ONE)
 | |
|     #define USE_MMAP_BIT            (SIZE_T_ONE)
 | |
| 
 | |
|     #ifdef MMAP
 | |
| 	#define CALL_MMAP(s)        MMAP(s)
 | |
|     #else /* MMAP */
 | |
| 	#define CALL_MMAP(s)        MMAP_DEFAULT(s)
 | |
|     #endif /* MMAP */
 | |
|     #ifdef MUNMAP
 | |
| 	#define CALL_MUNMAP(a, s)   MUNMAP((a), (s))
 | |
|     #else /* MUNMAP */
 | |
| 	#define CALL_MUNMAP(a, s)   MUNMAP_DEFAULT((a), (s))
 | |
|     #endif /* MUNMAP */
 | |
|     #ifdef DIRECT_MMAP
 | |
| 	#define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
 | |
|     #else /* DIRECT_MMAP */
 | |
| 	#define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s)
 | |
|     #endif /* DIRECT_MMAP */
 | |
| #else  /* HAVE_MMAP */
 | |
|     #define IS_MMAPPED_BIT          (SIZE_T_ZERO)
 | |
|     #define USE_MMAP_BIT            (SIZE_T_ZERO)
 | |
| 
 | |
|     #define MMAP(s)                 MFAIL
 | |
|     #define MUNMAP(a, s)            (-1)
 | |
|     #define DIRECT_MMAP(s)          MFAIL
 | |
|     #define CALL_DIRECT_MMAP(s)     DIRECT_MMAP(s)
 | |
|     #define CALL_MMAP(s)            MMAP(s)
 | |
|     #define CALL_MUNMAP(a, s)       MUNMAP((a), (s))
 | |
| #endif /* HAVE_MMAP */
 | |
| 
 | |
| /**
 | |
|  * Define CALL_MREMAP
 | |
|  */
 | |
| #if HAVE_MMAP && HAVE_MREMAP
 | |
|     #ifdef MREMAP
 | |
| 	#define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))
 | |
|     #else /* MREMAP */
 | |
| 	#define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv))
 | |
|     #endif /* MREMAP */
 | |
| #else  /* HAVE_MMAP && HAVE_MREMAP */
 | |
|     #define CALL_MREMAP(addr, osz, nsz, mv)     MFAIL
 | |
| #endif /* HAVE_MMAP && HAVE_MREMAP */
 | |
| 
 | |
| /* mstate bit set if contiguous morecore disabled or failed */
 | |
| #define USE_NONCONTIGUOUS_BIT (4U)
 | |
| 
 | |
| /* segment bit set in create_mspace_with_base */
 | |
| #define EXTERN_BIT            (8U)
 | |
| 
 | |
| 
 | |
| /* --------------------------- Lock preliminaries ------------------------ */
 | |
| 
 | |
| /*
 | |
|   When locks are defined, there is one global lock, plus
 | |
|   one per-mspace lock.
 | |
| 
 | |
|   The global lock_ensures that mparams.magic and other unique
 | |
|   mparams values are initialized only once. It also protects
 | |
|   sequences of calls to MORECORE.  In many cases sys_alloc requires
 | |
|   two calls, that should not be interleaved with calls by other
 | |
|   threads.  This does not protect against direct calls to MORECORE
 | |
|   by other threads not using this lock, so there is still code to
 | |
|   cope the best we can on interference.
 | |
| 
 | |
|   Per-mspace locks surround calls to malloc, free, etc.  To enable use
 | |
|   in layered extensions, per-mspace locks are reentrant.
 | |
| 
 | |
|   Because lock-protected regions generally have bounded times, it is
 | |
|   OK to use the supplied simple spinlocks in the custom versions for
 | |
|   x86.
 | |
| 
 | |
|   If USE_LOCKS is > 1, the definitions of lock routines here are
 | |
|   bypassed, in which case you will need to define at least
 | |
|   INITIAL_LOCK, ACQUIRE_LOCK, RELEASE_LOCK and possibly TRY_LOCK
 | |
|   (which is not used in this malloc, but commonly needed in
 | |
|   extensions.)
 | |
| */
 | |
| 
 | |
| #if USE_LOCKS == 1
 | |
| 
 | |
| #if USE_SPIN_LOCKS
 | |
| #ifndef WIN32
 | |
| 
 | |
| /* Custom pthread-style spin locks on x86 and x64 for gcc */
 | |
| struct pthread_mlock_t {
 | |
|   volatile unsigned int l;
 | |
|   volatile unsigned int c;
 | |
|   volatile pthread_t threadid;
 | |
| };
 | |
| #define MLOCK_T struct        pthread_mlock_t
 | |
| #define CURRENT_THREAD        pthread_self()
 | |
| #define INITIAL_LOCK(sl)      (memset(sl, 0, sizeof(MLOCK_T)), 0)
 | |
| #define ACQUIRE_LOCK(sl)      pthread_acquire_lock(sl)
 | |
| #define RELEASE_LOCK(sl)      pthread_release_lock(sl)
 | |
| #define TRY_LOCK(sl)          pthread_try_lock(sl)
 | |
| #define SPINS_PER_YIELD       63
 | |
| 
 | |
| static MLOCK_T malloc_global_mutex = { 0, 0, 0};
 | |
| 
 | |
| static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) {
 | |
|   int spins = 0;
 | |
|   volatile unsigned int* lp = &sl->l;
 | |
|   for (;;) {
 | |
|     if (*lp != 0) {
 | |
|       if (sl->threadid == CURRENT_THREAD) {
 | |
| 	++sl->c;
 | |
| 	return 0;
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       /* place args to cmpxchgl in locals to evade oddities in some gccs */
 | |
|       int cmp = 0;
 | |
|       int val = 1;
 | |
|       int ret;
 | |
|       __asm__ __volatile__  ("lock; cmpxchgl %1, %2"
 | |
| 			     : "=a" (ret)
 | |
| 			     : "r" (val), "m" (*(lp)), "0"(cmp)
 | |
| 			     : "memory", "cc");
 | |
|       if (!ret) {
 | |
| 	assert(!sl->threadid);
 | |
| 	sl->c = 1;
 | |
| 	sl->threadid = CURRENT_THREAD;
 | |
| 	return 0;
 | |
|       }
 | |
|       if ((++spins & SPINS_PER_YIELD) == 0) {
 | |
| #if defined (__SVR4) && defined (__sun) /* solaris */
 | |
| 	thr_yield();
 | |
| #else
 | |
| #if defined(__linux__) || defined(__FreeBSD__) || defined(__APPLE__)
 | |
| 	sched_yield();
 | |
| #else  /* no-op yield on unknown systems */
 | |
| 	;
 | |
| #endif /* __linux__ || __FreeBSD__ || __APPLE__ */
 | |
| #endif /* solaris */
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) {
 | |
|   assert(sl->l != 0);
 | |
|   assert(sl->threadid == CURRENT_THREAD);
 | |
|   if (--sl->c == 0) {
 | |
|     volatile unsigned int* lp = &sl->l;
 | |
|     int prev = 0;
 | |
|     int ret;
 | |
|     sl->threadid = 0;
 | |
|     __asm__ __volatile__ ("lock; xchgl %0, %1"
 | |
| 			  : "=r" (ret)
 | |
| 			  : "m" (*(lp)), "0"(prev)
 | |
| 			  : "memory");
 | |
|   }
 | |
| }
 | |
| 
 | |
| static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) {
 | |
|   volatile unsigned int* lp = &sl->l;
 | |
|   if (*lp != 0) {
 | |
|       if (sl->threadid == CURRENT_THREAD) {
 | |
| 	++sl->c;
 | |
| 	return 1;
 | |
|       }
 | |
|   }
 | |
|   else {
 | |
|     int cmp = 0;
 | |
|     int val = 1;
 | |
|     int ret;
 | |
|     __asm__ __volatile__  ("lock; cmpxchgl %1, %2"
 | |
| 			   : "=a" (ret)
 | |
| 			   : "r" (val), "m" (*(lp)), "0"(cmp)
 | |
| 			   : "memory", "cc");
 | |
|     if (!ret) {
 | |
|       assert(!sl->threadid);
 | |
|       sl->c = 1;
 | |
|       sl->threadid = CURRENT_THREAD;
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| #else /* WIN32 */
 | |
| /* Custom win32-style spin locks on x86 and x64 for MSC */
 | |
| struct win32_mlock_t
 | |
| {
 | |
|   volatile long l;
 | |
|   volatile unsigned int c;
 | |
|   volatile long threadid;
 | |
| };
 | |
| 
 | |
| static inline int return_0(int i) { return 0; }
 | |
| #define MLOCK_T               struct win32_mlock_t
 | |
| #define CURRENT_THREAD        win32_getcurrentthreadid()
 | |
| #define INITIAL_LOCK(sl)      (memset(sl, 0, sizeof(MLOCK_T)), return_0(0))
 | |
| #define ACQUIRE_LOCK(sl)      win32_acquire_lock(sl)
 | |
| #define RELEASE_LOCK(sl)      win32_release_lock(sl)
 | |
| #define TRY_LOCK(sl)          win32_try_lock(sl)
 | |
| #define SPINS_PER_YIELD       63
 | |
| 
 | |
| static MLOCK_T malloc_global_mutex = { 0, 0, 0};
 | |
| 
 | |
| static FORCEINLINE long win32_getcurrentthreadid(void) {
 | |
| #ifdef _MSC_VER
 | |
| #if defined(_M_IX86)
 | |
|   long *threadstruct=(long *)__readfsdword(0x18);
 | |
|   long threadid=threadstruct[0x24/sizeof(long)];
 | |
|   return threadid;
 | |
| #elif defined(_M_X64)
 | |
|   /* todo */
 | |
|   return GetCurrentThreadId();
 | |
| #else
 | |
|   return GetCurrentThreadId();
 | |
| #endif
 | |
| #else
 | |
|   return GetCurrentThreadId();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static FORCEINLINE int win32_acquire_lock (MLOCK_T *sl) {
 | |
|   int spins = 0;
 | |
|   for (;;) {
 | |
|     if (sl->l != 0) {
 | |
|       if (sl->threadid == CURRENT_THREAD) {
 | |
| 	++sl->c;
 | |
| 	return 0;
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       if (!interlockedexchange(&sl->l, 1)) {
 | |
| 	assert(!sl->threadid);
 | |
| 		sl->c=CURRENT_THREAD;
 | |
| 	sl->threadid = CURRENT_THREAD;
 | |
| 	sl->c = 1;
 | |
| 	return 0;
 | |
|       }
 | |
|     }
 | |
|     if ((++spins & SPINS_PER_YIELD) == 0)
 | |
|       SleepEx(0, FALSE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static FORCEINLINE void win32_release_lock (MLOCK_T *sl) {
 | |
|   assert(sl->threadid == CURRENT_THREAD);
 | |
|   assert(sl->l != 0);
 | |
|   if (--sl->c == 0) {
 | |
|     sl->threadid = 0;
 | |
|     interlockedexchange (&sl->l, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static FORCEINLINE int win32_try_lock (MLOCK_T *sl) {
 | |
|   if(sl->l != 0) {
 | |
|       if (sl->threadid == CURRENT_THREAD) {
 | |
| 	++sl->c;
 | |
| 	return 1;
 | |
|       }
 | |
|   }
 | |
|   else {
 | |
|     if (!interlockedexchange(&sl->l, 1)){
 | |
|       assert(!sl->threadid);
 | |
|       sl->threadid = CURRENT_THREAD;
 | |
|       sl->c = 1;
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| #endif /* WIN32 */
 | |
| #else /* USE_SPIN_LOCKS */
 | |
| 
 | |
| #ifndef WIN32
 | |
| /* pthreads-based locks */
 | |
| 
 | |
| #define MLOCK_T               pthread_mutex_t
 | |
| #define CURRENT_THREAD        pthread_self()
 | |
| #define INITIAL_LOCK(sl)      pthread_init_lock(sl)
 | |
| #define ACQUIRE_LOCK(sl)      pthread_mutex_lock(sl)
 | |
| #define RELEASE_LOCK(sl)      pthread_mutex_unlock(sl)
 | |
| #define TRY_LOCK(sl)          (!pthread_mutex_trylock(sl))
 | |
| 
 | |
| static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER;
 | |
| 
 | |
| /* Cope with old-style linux recursive lock initialization by adding */
 | |
| /* skipped internal declaration from pthread.h */
 | |
| #ifdef linux
 | |
| #ifndef PTHREAD_MUTEX_RECURSIVE
 | |
| extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr,
 | |
| 					   int __kind));
 | |
| #define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP
 | |
| #define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y)
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| static int pthread_init_lock (MLOCK_T *sl) {
 | |
|   pthread_mutexattr_t attr;
 | |
|   if (pthread_mutexattr_init(&attr)) return 1;
 | |
|   if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1;
 | |
|   if (pthread_mutex_init(sl, &attr)) return 1;
 | |
|   if (pthread_mutexattr_destroy(&attr)) return 1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| #else /* WIN32 */
 | |
| /* Win32 critical sections */
 | |
| #define MLOCK_T               CRITICAL_SECTION
 | |
| #define CURRENT_THREAD        GetCurrentThreadId()
 | |
| #define INITIAL_LOCK(s)       (!InitializeCriticalSectionAndSpinCount((s), 0x80000000|4000))
 | |
| #define ACQUIRE_LOCK(s)       (EnterCriticalSection(s), 0)
 | |
| #define RELEASE_LOCK(s)       LeaveCriticalSection(s)
 | |
| #define TRY_LOCK(s)           TryEnterCriticalSection(s)
 | |
| #define NEED_GLOBAL_LOCK_INIT
 | |
| 
 | |
| static MLOCK_T malloc_global_mutex;
 | |
| static volatile long malloc_global_mutex_status;
 | |
| 
 | |
| /* Use spin loop to initialize global lock */
 | |
| static void init_malloc_global_mutex() {
 | |
|   for (;;) {
 | |
|     long stat = malloc_global_mutex_status;
 | |
|     if (stat > 0)
 | |
|       return;
 | |
|     /* transition to < 0 while initializing, then to > 0) */
 | |
|     if (stat == 0 &&
 | |
| 	interlockedcompareexchange(&malloc_global_mutex_status, -1, 0) == 0) {
 | |
|       InitializeCriticalSection(&malloc_global_mutex);
 | |
|       interlockedexchange(&malloc_global_mutex_status,1);
 | |
|       return;
 | |
|     }
 | |
|     SleepEx(0, FALSE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #endif /* WIN32 */
 | |
| #endif /* USE_SPIN_LOCKS */
 | |
| #endif /* USE_LOCKS == 1 */
 | |
| 
 | |
| /* -----------------------  User-defined locks ------------------------ */
 | |
| 
 | |
| #if USE_LOCKS > 1
 | |
| /* Define your own lock implementation here */
 | |
| /* #define INITIAL_LOCK(sl)  ... */
 | |
| /* #define ACQUIRE_LOCK(sl)  ... */
 | |
| /* #define RELEASE_LOCK(sl)  ... */
 | |
| /* #define TRY_LOCK(sl) ... */
 | |
| /* static MLOCK_T malloc_global_mutex = ... */
 | |
| #endif /* USE_LOCKS > 1 */
 | |
| 
 | |
| /* -----------------------  Lock-based state ------------------------ */
 | |
| 
 | |
| #if USE_LOCKS
 | |
| #define USE_LOCK_BIT               (2U)
 | |
| #else  /* USE_LOCKS */
 | |
| #define USE_LOCK_BIT               (0U)
 | |
| #define INITIAL_LOCK(l)
 | |
| #endif /* USE_LOCKS */
 | |
| 
 | |
| #if USE_LOCKS
 | |
| #define ACQUIRE_MALLOC_GLOBAL_LOCK()  ACQUIRE_LOCK(&malloc_global_mutex);
 | |
| #define RELEASE_MALLOC_GLOBAL_LOCK()  RELEASE_LOCK(&malloc_global_mutex);
 | |
| #else  /* USE_LOCKS */
 | |
| #define ACQUIRE_MALLOC_GLOBAL_LOCK()
 | |
| #define RELEASE_MALLOC_GLOBAL_LOCK()
 | |
| #endif /* USE_LOCKS */
 | |
| 
 | |
| 
 | |
| /* -----------------------  Chunk representations ------------------------ */
 | |
| 
 | |
| /*
 | |
|   (The following includes lightly edited explanations by Colin Plumb.)
 | |
| 
 | |
|   The malloc_chunk declaration below is misleading (but accurate and
 | |
|   necessary).  It declares a "view" into memory allowing access to
 | |
|   necessary fields at known offsets from a given base.
 | |
| 
 | |
|   Chunks of memory are maintained using a `boundary tag' method as
 | |
|   originally described by Knuth.  (See the paper by Paul Wilson
 | |
|   ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
 | |
|   techniques.)  Sizes of free chunks are stored both in the front of
 | |
|   each chunk and at the end.  This makes consolidating fragmented
 | |
|   chunks into bigger chunks fast.  The head fields also hold bits
 | |
|   representing whether chunks are free or in use.
 | |
| 
 | |
|   Here are some pictures to make it clearer.  They are "exploded" to
 | |
|   show that the state of a chunk can be thought of as extending from
 | |
|   the high 31 bits of the head field of its header through the
 | |
|   prev_foot and PINUSE_BIT bit of the following chunk header.
 | |
| 
 | |
|   A chunk that's in use looks like:
 | |
| 
 | |
|    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	   | Size of previous chunk (if P = 0)                             |
 | |
| 	   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
 | |
| 	 | Size of this chunk                                         1| +-+
 | |
|    mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	 |                                                               |
 | |
| 	 +-                                                             -+
 | |
| 	 |                                                               |
 | |
| 	 +-                                                             -+
 | |
| 	 |                                                               :
 | |
| 	 +-      size - sizeof(size_t) available payload bytes          -+
 | |
| 	 :                                                               |
 | |
|  chunk-> +-                                                             -+
 | |
| 	 |                                                               |
 | |
| 	 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
 | |
|        | Size of next chunk (may or may not be in use)               | +-+
 | |
|  mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 
 | |
|     And if it's free, it looks like this:
 | |
| 
 | |
|    chunk-> +-                                                             -+
 | |
| 	   | User payload (must be in use, or we would have merged!)       |
 | |
| 	   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
 | |
| 	 | Size of this chunk                                         0| +-+
 | |
|    mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	 | Next pointer                                                  |
 | |
| 	 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	 | Prev pointer                                                  |
 | |
| 	 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	 |                                                               :
 | |
| 	 +-      size - sizeof(struct chunk) unused bytes               -+
 | |
| 	 :                                                               |
 | |
|  chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	 | Size of this chunk                                            |
 | |
| 	 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
 | |
|        | Size of next chunk (must be in use, or we would have merged)| +-+
 | |
|  mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|        |                                                               :
 | |
|        +- User payload                                                -+
 | |
|        :                                                               |
 | |
|        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 								     |0|
 | |
| 								     +-+
 | |
|   Note that since we always merge adjacent free chunks, the chunks
 | |
|   adjacent to a free chunk must be in use.
 | |
| 
 | |
|   Given a pointer to a chunk (which can be derived trivially from the
 | |
|   payload pointer) we can, in O(1) time, find out whether the adjacent
 | |
|   chunks are free, and if so, unlink them from the lists that they
 | |
|   are on and merge them with the current chunk.
 | |
| 
 | |
|   Chunks always begin on even word boundaries, so the mem portion
 | |
|   (which is returned to the user) is also on an even word boundary, and
 | |
|   thus at least double-word aligned.
 | |
| 
 | |
|   The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
 | |
|   chunk size (which is always a multiple of two words), is an in-use
 | |
|   bit for the *previous* chunk.  If that bit is *clear*, then the
 | |
|   word before the current chunk size contains the previous chunk
 | |
|   size, and can be used to find the front of the previous chunk.
 | |
|   The very first chunk allocated always has this bit set, preventing
 | |
|   access to non-existent (or non-owned) memory. If pinuse is set for
 | |
|   any given chunk, then you CANNOT determine the size of the
 | |
|   previous chunk, and might even get a memory addressing fault when
 | |
|   trying to do so.
 | |
| 
 | |
|   The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
 | |
|   the chunk size redundantly records whether the current chunk is
 | |
|   inuse. This redundancy enables usage checks within free and realloc,
 | |
|   and reduces indirection when freeing and consolidating chunks.
 | |
| 
 | |
|   Each freshly allocated chunk must have both cinuse and pinuse set.
 | |
|   That is, each allocated chunk borders either a previously allocated
 | |
|   and still in-use chunk, or the base of its memory arena. This is
 | |
|   ensured by making all allocations from the `lowest' part of any
 | |
|   found chunk.  Further, no free chunk physically borders another one,
 | |
|   so each free chunk is known to be preceded and followed by either
 | |
|   inuse chunks or the ends of memory.
 | |
| 
 | |
|   Note that the `foot' of the current chunk is actually represented
 | |
|   as the prev_foot of the NEXT chunk. This makes it easier to
 | |
|   deal with alignments etc but can be very confusing when trying
 | |
|   to extend or adapt this code.
 | |
| 
 | |
|   The exceptions to all this are
 | |
| 
 | |
|      1. The special chunk `top' is the top-most available chunk (i.e.,
 | |
| 	the one bordering the end of available memory). It is treated
 | |
| 	specially.  Top is never included in any bin, is used only if
 | |
| 	no other chunk is available, and is released back to the
 | |
| 	system if it is very large (see M_TRIM_THRESHOLD).  In effect,
 | |
| 	the top chunk is treated as larger (and thus less well
 | |
| 	fitting) than any other available chunk.  The top chunk
 | |
| 	doesn't update its trailing size field since there is no next
 | |
| 	contiguous chunk that would have to index off it. However,
 | |
| 	space is still allocated for it (TOP_FOOT_SIZE) to enable
 | |
| 	separation or merging when space is extended.
 | |
| 
 | |
|      3. Chunks allocated via mmap, which have the lowest-order bit
 | |
| 	(IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
 | |
| 	PINUSE_BIT in their head fields.  Because they are allocated
 | |
| 	one-by-one, each must carry its own prev_foot field, which is
 | |
| 	also used to hold the offset this chunk has within its mmapped
 | |
| 	region, which is needed to preserve alignment. Each mmapped
 | |
| 	chunk is trailed by the first two fields of a fake next-chunk
 | |
| 	for sake of usage checks.
 | |
| 
 | |
| */
 | |
| 
 | |
| struct malloc_chunk {
 | |
|   size_t               prev_foot;  /* Size of previous chunk (if free).  */
 | |
|   size_t               head;       /* Size and inuse bits. */
 | |
|   struct malloc_chunk* fd;         /* double links -- used only if free. */
 | |
|   struct malloc_chunk* bk;
 | |
| };
 | |
| 
 | |
| typedef struct malloc_chunk  mchunk;
 | |
| typedef struct malloc_chunk* mchunkptr;
 | |
| typedef struct malloc_chunk* sbinptr;  /* The type of bins of chunks */
 | |
| typedef unsigned int bindex_t;         /* Described below */
 | |
| typedef unsigned int binmap_t;         /* Described below */
 | |
| typedef unsigned int flag_t;           /* The type of various bit flag sets */
 | |
| 
 | |
| /* ------------------- Chunks sizes and alignments ----------------------- */
 | |
| 
 | |
| #define MCHUNK_SIZE         (sizeof(mchunk))
 | |
| 
 | |
| #if FOOTERS
 | |
| #define CHUNK_OVERHEAD      (TWO_SIZE_T_SIZES)
 | |
| #else /* FOOTERS */
 | |
| #define CHUNK_OVERHEAD      (SIZE_T_SIZE)
 | |
| #endif /* FOOTERS */
 | |
| 
 | |
| /* MMapped chunks need a second word of overhead ... */
 | |
| #define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
 | |
| /* ... and additional padding for fake next-chunk at foot */
 | |
| #define MMAP_FOOT_PAD       (FOUR_SIZE_T_SIZES)
 | |
| 
 | |
| /* The smallest size we can malloc is an aligned minimal chunk */
 | |
| #define MIN_CHUNK_SIZE\
 | |
|   ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
 | |
| 
 | |
| /* conversion from malloc headers to user pointers, and back */
 | |
| #define chunk2mem(p)        ((void*)((char*)(p)       + TWO_SIZE_T_SIZES))
 | |
| #define mem2chunk(mem)      ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
 | |
| /* chunk associated with aligned address A */
 | |
| #define align_as_chunk(A)   (mchunkptr)((A) + align_offset(chunk2mem(A)))
 | |
| 
 | |
| /* Bounds on request (not chunk) sizes. */
 | |
| #define MAX_REQUEST         ((-MIN_CHUNK_SIZE) << 2)
 | |
| #define MIN_REQUEST         (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
 | |
| 
 | |
| /* pad request bytes into a usable size */
 | |
| #define pad_request(req) \
 | |
|    (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
 | |
| 
 | |
| /* pad request, checking for minimum (but not maximum) */
 | |
| #define request2size(req) \
 | |
|   (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
 | |
| 
 | |
| 
 | |
| /* ------------------ Operations on head and foot fields ----------------- */
 | |
| 
 | |
| /*
 | |
|   The head field of a chunk is or'ed with PINUSE_BIT when previous
 | |
|   adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
 | |
|   use. If the chunk was obtained with mmap, the prev_foot field has
 | |
|   IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
 | |
|   mmapped region to the base of the chunk.
 | |
| 
 | |
|   FLAG4_BIT is not used by this malloc, but might be useful in extensions.
 | |
| */
 | |
| 
 | |
| #define PINUSE_BIT          (SIZE_T_ONE)
 | |
| #define CINUSE_BIT          (SIZE_T_TWO)
 | |
| #define FLAG4_BIT           (SIZE_T_FOUR)
 | |
| #define INUSE_BITS          (PINUSE_BIT|CINUSE_BIT)
 | |
| #define FLAG_BITS           (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
 | |
| 
 | |
| /* Head value for fenceposts */
 | |
| #define FENCEPOST_HEAD      (INUSE_BITS|SIZE_T_SIZE)
 | |
| 
 | |
| /* extraction of fields from head words */
 | |
| #define cinuse(p)           ((p)->head & CINUSE_BIT)
 | |
| #define pinuse(p)           ((p)->head & PINUSE_BIT)
 | |
| #define chunksize(p)        ((p)->head & ~(FLAG_BITS))
 | |
| 
 | |
| #define clear_pinuse(p)     ((p)->head &= ~PINUSE_BIT)
 | |
| #define clear_cinuse(p)     ((p)->head &= ~CINUSE_BIT)
 | |
| 
 | |
| /* Treat space at ptr +/- offset as a chunk */
 | |
| #define chunk_plus_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
 | |
| #define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
 | |
| 
 | |
| /* Ptr to next or previous physical malloc_chunk. */
 | |
| #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
 | |
| #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
 | |
| 
 | |
| /* extract next chunk's pinuse bit */
 | |
| #define next_pinuse(p)  ((next_chunk(p)->head) & PINUSE_BIT)
 | |
| 
 | |
| /* Get/set size at footer */
 | |
| #define get_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot)
 | |
| #define set_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
 | |
| 
 | |
| /* Set size, pinuse bit, and foot */
 | |
| #define set_size_and_pinuse_of_free_chunk(p, s)\
 | |
|   ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
 | |
| 
 | |
| /* Set size, pinuse bit, foot, and clear next pinuse */
 | |
| #define set_free_with_pinuse(p, s, n)\
 | |
|   (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
 | |
| 
 | |
| #define is_mmapped(p)\
 | |
|   (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
 | |
| 
 | |
| /* Get the internal overhead associated with chunk p */
 | |
| #define overhead_for(p)\
 | |
|  (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
 | |
| 
 | |
| /* Return true if malloced space is not necessarily cleared */
 | |
| #if MMAP_CLEARS
 | |
| #define calloc_must_clear(p) (!is_mmapped(p))
 | |
| #else /* MMAP_CLEARS */
 | |
| #define calloc_must_clear(p) (1)
 | |
| #endif /* MMAP_CLEARS */
 | |
| 
 | |
| /* ---------------------- Overlaid data structures ----------------------- */
 | |
| 
 | |
| /*
 | |
|   When chunks are not in use, they are treated as nodes of either
 | |
|   lists or trees.
 | |
| 
 | |
|   "Small"  chunks are stored in circular doubly-linked lists, and look
 | |
|   like this:
 | |
| 
 | |
|     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	    |             Size of previous chunk                            |
 | |
| 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|     `head:' |             Size of chunk, in bytes                         |P|
 | |
|       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	    |             Forward pointer to next chunk in list             |
 | |
| 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	    |             Back pointer to previous chunk in list            |
 | |
| 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	    |             Unused space (may be 0 bytes long)                .
 | |
| 	    .                                                               .
 | |
| 	    .                                                               |
 | |
| nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|     `foot:' |             Size of chunk, in bytes                           |
 | |
| 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 
 | |
|   Larger chunks are kept in a form of bitwise digital trees (aka
 | |
|   tries) keyed on chunksizes.  Because malloc_tree_chunks are only for
 | |
|   free chunks greater than 256 bytes, their size doesn't impose any
 | |
|   constraints on user chunk sizes.  Each node looks like:
 | |
| 
 | |
|     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	    |             Size of previous chunk                            |
 | |
| 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|     `head:' |             Size of chunk, in bytes                         |P|
 | |
|       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	    |             Forward pointer to next chunk of same size        |
 | |
| 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	    |             Back pointer to previous chunk of same size       |
 | |
| 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	    |             Pointer to left child (child[0])                  |
 | |
| 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	    |             Pointer to right child (child[1])                 |
 | |
| 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	    |             Pointer to parent                                 |
 | |
| 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	    |             bin index of this chunk                           |
 | |
| 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 	    |             Unused space                                      .
 | |
| 	    .                                                               |
 | |
| nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|     `foot:' |             Size of chunk, in bytes                           |
 | |
| 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 
 | |
|   Each tree holding treenodes is a tree of unique chunk sizes.  Chunks
 | |
|   of the same size are arranged in a circularly-linked list, with only
 | |
|   the oldest chunk (the next to be used, in our FIFO ordering)
 | |
|   actually in the tree.  (Tree members are distinguished by a non-null
 | |
|   parent pointer.)  If a chunk with the same size as an existing node
 | |
|   is inserted, it is linked off the existing node using pointers that
 | |
|   work in the same way as fd/bk pointers of small chunks.
 | |
| 
 | |
|   Each tree contains a power of 2 sized range of chunk sizes (the
 | |
|   smallest is 0x100 <= x < 0x180), which is divided in half at each
 | |
|   tree level, with the chunks in the smaller half of the range (0x100
 | |
|   <= x < 0x140 for the top nose) in the left subtree and the larger
 | |
|   half (0x140 <= x < 0x180) in the right subtree.  This is, of course,
 | |
|   done by inspecting individual bits.
 | |
| 
 | |
|   Using these rules, each node's left subtree contains all smaller
 | |
|   sizes than its right subtree.  However, the node at the root of each
 | |
|   subtree has no particular ordering relationship to either.  (The
 | |
|   dividing line between the subtree sizes is based on trie relation.)
 | |
|   If we remove the last chunk of a given size from the interior of the
 | |
|   tree, we need to replace it with a leaf node.  The tree ordering
 | |
|   rules permit a node to be replaced by any leaf below it.
 | |
| 
 | |
|   The smallest chunk in a tree (a common operation in a best-fit
 | |
|   allocator) can be found by walking a path to the leftmost leaf in
 | |
|   the tree.  Unlike a usual binary tree, where we follow left child
 | |
|   pointers until we reach a null, here we follow the right child
 | |
|   pointer any time the left one is null, until we reach a leaf with
 | |
|   both child pointers null. The smallest chunk in the tree will be
 | |
|   somewhere along that path.
 | |
| 
 | |
|   The worst case number of steps to add, find, or remove a node is
 | |
|   bounded by the number of bits differentiating chunks within
 | |
|   bins. Under current bin calculations, this ranges from 6 up to 21
 | |
|   (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
 | |
|   is of course much better.
 | |
| */
 | |
| 
 | |
| struct malloc_tree_chunk {
 | |
|   /* The first four fields must be compatible with malloc_chunk */
 | |
|   size_t                    prev_foot;
 | |
|   size_t                    head;
 | |
|   struct malloc_tree_chunk* fd;
 | |
|   struct malloc_tree_chunk* bk;
 | |
| 
 | |
|   struct malloc_tree_chunk* child[2];
 | |
|   struct malloc_tree_chunk* parent;
 | |
|   bindex_t                  index;
 | |
| };
 | |
| 
 | |
| typedef struct malloc_tree_chunk  tchunk;
 | |
| typedef struct malloc_tree_chunk* tchunkptr;
 | |
| typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
 | |
| 
 | |
| /* A little helper macro for trees */
 | |
| #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
 | |
| 
 | |
| /* ----------------------------- Segments -------------------------------- */
 | |
| 
 | |
| /*
 | |
|   Each malloc space may include non-contiguous segments, held in a
 | |
|   list headed by an embedded malloc_segment record representing the
 | |
|   top-most space. Segments also include flags holding properties of
 | |
|   the space. Large chunks that are directly allocated by mmap are not
 | |
|   included in this list. They are instead independently created and
 | |
|   destroyed without otherwise keeping track of them.
 | |
| 
 | |
|   Segment management mainly comes into play for spaces allocated by
 | |
|   MMAP.  Any call to MMAP might or might not return memory that is
 | |
|   adjacent to an existing segment.  MORECORE normally contiguously
 | |
|   extends the current space, so this space is almost always adjacent,
 | |
|   which is simpler and faster to deal with. (This is why MORECORE is
 | |
|   used preferentially to MMAP when both are available -- see
 | |
|   sys_alloc.)  When allocating using MMAP, we don't use any of the
 | |
|   hinting mechanisms (inconsistently) supported in various
 | |
|   implementations of unix mmap, or distinguish reserving from
 | |
|   committing memory. Instead, we just ask for space, and exploit
 | |
|   contiguity when we get it.  It is probably possible to do
 | |
|   better than this on some systems, but no general scheme seems
 | |
|   to be significantly better.
 | |
| 
 | |
|   Management entails a simpler variant of the consolidation scheme
 | |
|   used for chunks to reduce fragmentation -- new adjacent memory is
 | |
|   normally prepended or appended to an existing segment. However,
 | |
|   there are limitations compared to chunk consolidation that mostly
 | |
|   reflect the fact that segment processing is relatively infrequent
 | |
|   (occurring only when getting memory from system) and that we
 | |
|   don't expect to have huge numbers of segments:
 | |
| 
 | |
|   * Segments are not indexed, so traversal requires linear scans.  (It
 | |
|     would be possible to index these, but is not worth the extra
 | |
|     overhead and complexity for most programs on most platforms.)
 | |
|   * New segments are only appended to old ones when holding top-most
 | |
|     memory; if they cannot be prepended to others, they are held in
 | |
|     different segments.
 | |
| 
 | |
|   Except for the top-most segment of an mstate, each segment record
 | |
|   is kept at the tail of its segment. Segments are added by pushing
 | |
|   segment records onto the list headed by &mstate.seg for the
 | |
|   containing mstate.
 | |
| 
 | |
|   Segment flags control allocation/merge/deallocation policies:
 | |
|   * If EXTERN_BIT set, then we did not allocate this segment,
 | |
|     and so should not try to deallocate or merge with others.
 | |
|     (This currently holds only for the initial segment passed
 | |
|     into create_mspace_with_base.)
 | |
|   * If IS_MMAPPED_BIT set, the segment may be merged with
 | |
|     other surrounding mmapped segments and trimmed/de-allocated
 | |
|     using munmap.
 | |
|   * If neither bit is set, then the segment was obtained using
 | |
|     MORECORE so can be merged with surrounding MORECORE'd segments
 | |
|     and deallocated/trimmed using MORECORE with negative arguments.
 | |
| */
 | |
| 
 | |
| struct malloc_segment {
 | |
|   char*        base;             /* base address */
 | |
|   size_t       size;             /* allocated size */
 | |
|   struct malloc_segment* next;   /* ptr to next segment */
 | |
|   flag_t       sflags;           /* mmap and extern flag */
 | |
| };
 | |
| 
 | |
| #define is_mmapped_segment(S)  ((S)->sflags & IS_MMAPPED_BIT)
 | |
| #define is_extern_segment(S)   ((S)->sflags & EXTERN_BIT)
 | |
| 
 | |
| typedef struct malloc_segment  msegment;
 | |
| typedef struct malloc_segment* msegmentptr;
 | |
| 
 | |
| /* ---------------------------- malloc_state ----------------------------- */
 | |
| 
 | |
| /*
 | |
|    A malloc_state holds all of the bookkeeping for a space.
 | |
|    The main fields are:
 | |
| 
 | |
|   Top
 | |
|     The topmost chunk of the currently active segment. Its size is
 | |
|     cached in topsize.  The actual size of topmost space is
 | |
|     topsize+TOP_FOOT_SIZE, which includes space reserved for adding
 | |
|     fenceposts and segment records if necessary when getting more
 | |
|     space from the system.  The size at which to autotrim top is
 | |
|     cached from mparams in trim_check, except that it is disabled if
 | |
|     an autotrim fails.
 | |
| 
 | |
|   Designated victim (dv)
 | |
|     This is the preferred chunk for servicing small requests that
 | |
|     don't have exact fits.  It is normally the chunk split off most
 | |
|     recently to service another small request.  Its size is cached in
 | |
|     dvsize. The link fields of this chunk are not maintained since it
 | |
|     is not kept in a bin.
 | |
| 
 | |
|   SmallBins
 | |
|     An array of bin headers for free chunks.  These bins hold chunks
 | |
|     with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
 | |
|     chunks of all the same size, spaced 8 bytes apart.  To simplify
 | |
|     use in double-linked lists, each bin header acts as a malloc_chunk
 | |
|     pointing to the real first node, if it exists (else pointing to
 | |
|     itself).  This avoids special-casing for headers.  But to avoid
 | |
|     waste, we allocate only the fd/bk pointers of bins, and then use
 | |
|     repositioning tricks to treat these as the fields of a chunk.
 | |
| 
 | |
|   TreeBins
 | |
|     Treebins are pointers to the roots of trees holding a range of
 | |
|     sizes. There are 2 equally spaced treebins for each power of two
 | |
|     from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
 | |
|     larger.
 | |
| 
 | |
|   Bin maps
 | |
|     There is one bit map for small bins ("smallmap") and one for
 | |
|     treebins ("treemap).  Each bin sets its bit when non-empty, and
 | |
|     clears the bit when empty.  Bit operations are then used to avoid
 | |
|     bin-by-bin searching -- nearly all "search" is done without ever
 | |
|     looking at bins that won't be selected.  The bit maps
 | |
|     conservatively use 32 bits per map word, even if on 64bit system.
 | |
|     For a good description of some of the bit-based techniques used
 | |
|     here, see Henry S. Warren Jr's book "Hacker's Delight" (and
 | |
|     supplement at http://hackersdelight.org/). Many of these are
 | |
|     intended to reduce the branchiness of paths through malloc etc, as
 | |
|     well as to reduce the number of memory locations read or written.
 | |
| 
 | |
|   Segments
 | |
|     A list of segments headed by an embedded malloc_segment record
 | |
|     representing the initial space.
 | |
| 
 | |
|   Address check support
 | |
|     The least_addr field is the least address ever obtained from
 | |
|     MORECORE or MMAP. Attempted frees and reallocs of any address less
 | |
|     than this are trapped (unless INSECURE is defined).
 | |
| 
 | |
|   Magic tag
 | |
|     A cross-check field that should always hold same value as mparams.magic.
 | |
| 
 | |
|   Flags
 | |
|     Bits recording whether to use MMAP, locks, or contiguous MORECORE
 | |
| 
 | |
|   Statistics
 | |
|     Each space keeps track of current and maximum system memory
 | |
|     obtained via MORECORE or MMAP.
 | |
| 
 | |
|   Trim support
 | |
|     Fields holding the amount of unused topmost memory that should trigger
 | |
|     timing, and a counter to force periodic scanning to release unused
 | |
|     non-topmost segments.
 | |
| 
 | |
|   Locking
 | |
|     If USE_LOCKS is defined, the "mutex" lock is acquired and released
 | |
|     around every public call using this mspace.
 | |
| 
 | |
|   Extension support
 | |
|     A void* pointer and a size_t field that can be used to help implement
 | |
|     extensions to this malloc.
 | |
| */
 | |
| 
 | |
| /* Bin types, widths and sizes */
 | |
| #define NSMALLBINS        (32U)
 | |
| #define NTREEBINS         (32U)
 | |
| #define SMALLBIN_SHIFT    (3U)
 | |
| #define SMALLBIN_WIDTH    (SIZE_T_ONE << SMALLBIN_SHIFT)
 | |
| #define TREEBIN_SHIFT     (8U)
 | |
| #define MIN_LARGE_SIZE    (SIZE_T_ONE << TREEBIN_SHIFT)
 | |
| #define MAX_SMALL_SIZE    (MIN_LARGE_SIZE - SIZE_T_ONE)
 | |
| #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
 | |
| 
 | |
| struct malloc_state {
 | |
|   binmap_t   smallmap;
 | |
|   binmap_t   treemap;
 | |
|   size_t     dvsize;
 | |
|   size_t     topsize;
 | |
|   char*      least_addr;
 | |
|   mchunkptr  dv;
 | |
|   mchunkptr  top;
 | |
|   size_t     trim_check;
 | |
|   size_t     release_checks;
 | |
|   size_t     magic;
 | |
|   mchunkptr  smallbins[(NSMALLBINS+1)*2];
 | |
|   tbinptr    treebins[NTREEBINS];
 | |
|   size_t     footprint;
 | |
|   size_t     max_footprint;
 | |
|   flag_t     mflags;
 | |
| #if USE_LOCKS
 | |
|   MLOCK_T    mutex;     /* locate lock among fields that rarely change */
 | |
| #endif /* USE_LOCKS */
 | |
|   msegment   seg;
 | |
|   void*      extp;      /* Unused but available for extensions */
 | |
|   size_t     exts;
 | |
| };
 | |
| 
 | |
| typedef struct malloc_state*    mstate;
 | |
| 
 | |
| /* ------------- Global malloc_state and malloc_params ------------------- */
 | |
| 
 | |
| /*
 | |
|   malloc_params holds global properties, including those that can be
 | |
|   dynamically set using mallopt. There is a single instance, mparams,
 | |
|   initialized in init_mparams. Note that the non-zeroness of "magic"
 | |
|   also serves as an initialization flag.
 | |
| */
 | |
| 
 | |
| struct malloc_params {
 | |
|   volatile size_t magic;
 | |
|   size_t page_size;
 | |
|   size_t granularity;
 | |
|   size_t mmap_threshold;
 | |
|   size_t trim_threshold;
 | |
|   flag_t default_mflags;
 | |
| };
 | |
| 
 | |
| static struct malloc_params mparams;
 | |
| 
 | |
| /* Ensure mparams initialized */
 | |
| #define ensure_initialization() ((void)(mparams.magic != 0 || init_mparams()))
 | |
| 
 | |
| #if !ONLY_MSPACES
 | |
| 
 | |
| /* The global malloc_state used for all non-"mspace" calls */
 | |
| static struct malloc_state _gm_;
 | |
| #define gm                 (&_gm_)
 | |
| #define is_global(M)       ((M) == &_gm_)
 | |
| 
 | |
| #endif /* !ONLY_MSPACES */
 | |
| 
 | |
| #define is_initialized(M)  ((M)->top != 0)
 | |
| 
 | |
| /* -------------------------- system alloc setup ------------------------- */
 | |
| 
 | |
| /* Operations on mflags */
 | |
| 
 | |
| #define use_lock(M)           ((M)->mflags &   USE_LOCK_BIT)
 | |
| #define enable_lock(M)        ((M)->mflags |=  USE_LOCK_BIT)
 | |
| #define disable_lock(M)       ((M)->mflags &= ~USE_LOCK_BIT)
 | |
| 
 | |
| #define use_mmap(M)           ((M)->mflags &   USE_MMAP_BIT)
 | |
| #define enable_mmap(M)        ((M)->mflags |=  USE_MMAP_BIT)
 | |
| #define disable_mmap(M)       ((M)->mflags &= ~USE_MMAP_BIT)
 | |
| 
 | |
| #define use_noncontiguous(M)  ((M)->mflags &   USE_NONCONTIGUOUS_BIT)
 | |
| #define disable_contiguous(M) ((M)->mflags |=  USE_NONCONTIGUOUS_BIT)
 | |
| 
 | |
| #define set_lock(M,L)\
 | |
|  ((M)->mflags = (L)?\
 | |
|   ((M)->mflags | USE_LOCK_BIT) :\
 | |
|   ((M)->mflags & ~USE_LOCK_BIT))
 | |
| 
 | |
| /* page-align a size */
 | |
| #define page_align(S)\
 | |
|  (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
 | |
| 
 | |
| /* granularity-align a size */
 | |
| #define granularity_align(S)\
 | |
|   (((S) + (mparams.granularity - SIZE_T_ONE))\
 | |
|    & ~(mparams.granularity - SIZE_T_ONE))
 | |
| 
 | |
| 
 | |
| /* For mmap, use granularity alignment on windows, else page-align */
 | |
| #ifdef WIN32
 | |
| #define mmap_align(S) granularity_align(S)
 | |
| #else
 | |
| #define mmap_align(S) page_align(S)
 | |
| #endif
 | |
| 
 | |
| /* For sys_alloc, enough padding to ensure can malloc request on success */
 | |
| #define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT)
 | |
| 
 | |
| #define is_page_aligned(S)\
 | |
|    (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
 | |
| #define is_granularity_aligned(S)\
 | |
|    (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
 | |
| 
 | |
| /*  True if segment S holds address A */
 | |
| #define segment_holds(S, A)\
 | |
|   ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
 | |
| 
 | |
| /* Return segment holding given address */
 | |
| static msegmentptr segment_holding(mstate m, char* addr) {
 | |
|   msegmentptr sp = &m->seg;
 | |
|   for (;;) {
 | |
|     if (addr >= sp->base && addr < sp->base + sp->size)
 | |
|       return sp;
 | |
|     if ((sp = sp->next) == 0)
 | |
|       return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Return true if segment contains a segment link */
 | |
| static int has_segment_link(mstate m, msegmentptr ss) {
 | |
|   msegmentptr sp = &m->seg;
 | |
|   for (;;) {
 | |
|     if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
 | |
|       return 1;
 | |
|     if ((sp = sp->next) == 0)
 | |
|       return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef MORECORE_CANNOT_TRIM
 | |
| #define should_trim(M,s)  ((s) > (M)->trim_check)
 | |
| #else  /* MORECORE_CANNOT_TRIM */
 | |
| #define should_trim(M,s)  (0)
 | |
| #endif /* MORECORE_CANNOT_TRIM */
 | |
| 
 | |
| /*
 | |
|   TOP_FOOT_SIZE is padding at the end of a segment, including space
 | |
|   that may be needed to place segment records and fenceposts when new
 | |
|   noncontiguous segments are added.
 | |
| */
 | |
| #define TOP_FOOT_SIZE\
 | |
|   (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
 | |
| 
 | |
| 
 | |
| /* -------------------------------  Hooks -------------------------------- */
 | |
| 
 | |
| /*
 | |
|   PREACTION should be defined to return 0 on success, and nonzero on
 | |
|   failure. If you are not using locking, you can redefine these to do
 | |
|   anything you like.
 | |
| */
 | |
| 
 | |
| #if USE_LOCKS
 | |
| 
 | |
| #define PREACTION(M)  ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
 | |
| #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
 | |
| #else /* USE_LOCKS */
 | |
| 
 | |
| #ifndef PREACTION
 | |
| #define PREACTION(M) (0)
 | |
| #endif  /* PREACTION */
 | |
| 
 | |
| #ifndef POSTACTION
 | |
| #define POSTACTION(M)
 | |
| #endif  /* POSTACTION */
 | |
| 
 | |
| #endif /* USE_LOCKS */
 | |
| 
 | |
| /*
 | |
|   CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
 | |
|   USAGE_ERROR_ACTION is triggered on detected bad frees and
 | |
|   reallocs. The argument p is an address that might have triggered the
 | |
|   fault. It is ignored by the two predefined actions, but might be
 | |
|   useful in custom actions that try to help diagnose errors.
 | |
| */
 | |
| 
 | |
| #if PROCEED_ON_ERROR
 | |
| 
 | |
| /* A count of the number of corruption errors causing resets */
 | |
| int malloc_corruption_error_count;
 | |
| 
 | |
| /* default corruption action */
 | |
| static void reset_on_error(mstate m);
 | |
| 
 | |
| #define CORRUPTION_ERROR_ACTION(m)  reset_on_error(m)
 | |
| #define USAGE_ERROR_ACTION(m, p)
 | |
| 
 | |
| #else /* PROCEED_ON_ERROR */
 | |
| 
 | |
| #ifndef CORRUPTION_ERROR_ACTION
 | |
| #define CORRUPTION_ERROR_ACTION(m) ABORT
 | |
| #endif /* CORRUPTION_ERROR_ACTION */
 | |
| 
 | |
| #ifndef USAGE_ERROR_ACTION
 | |
| #define USAGE_ERROR_ACTION(m,p) ABORT
 | |
| #endif /* USAGE_ERROR_ACTION */
 | |
| 
 | |
| #endif /* PROCEED_ON_ERROR */
 | |
| 
 | |
| /* -------------------------- Debugging setup ---------------------------- */
 | |
| 
 | |
| #if ! DEBUG
 | |
| 
 | |
| #define check_free_chunk(M,P)
 | |
| #define check_inuse_chunk(M,P)
 | |
| #define check_malloced_chunk(M,P,N)
 | |
| #define check_mmapped_chunk(M,P)
 | |
| #define check_malloc_state(M)
 | |
| #define check_top_chunk(M,P)
 | |
| 
 | |
| #else /* DEBUG */
 | |
| #define check_free_chunk(M,P)       do_check_free_chunk(M,P)
 | |
| #define check_inuse_chunk(M,P)      do_check_inuse_chunk(M,P)
 | |
| #define check_top_chunk(M,P)        do_check_top_chunk(M,P)
 | |
| #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
 | |
| #define check_mmapped_chunk(M,P)    do_check_mmapped_chunk(M,P)
 | |
| #define check_malloc_state(M)       do_check_malloc_state(M)
 | |
| 
 | |
| static void   do_check_any_chunk(mstate m, mchunkptr p);
 | |
| static void   do_check_top_chunk(mstate m, mchunkptr p);
 | |
| static void   do_check_mmapped_chunk(mstate m, mchunkptr p);
 | |
| static void   do_check_inuse_chunk(mstate m, mchunkptr p);
 | |
| static void   do_check_free_chunk(mstate m, mchunkptr p);
 | |
| static void   do_check_malloced_chunk(mstate m, void* mem, size_t s);
 | |
| static void   do_check_tree(mstate m, tchunkptr t);
 | |
| static void   do_check_treebin(mstate m, bindex_t i);
 | |
| static void   do_check_smallbin(mstate m, bindex_t i);
 | |
| static void   do_check_malloc_state(mstate m);
 | |
| static int    bin_find(mstate m, mchunkptr x);
 | |
| static size_t traverse_and_check(mstate m);
 | |
| #endif /* DEBUG */
 | |
| 
 | |
| /* ---------------------------- Indexing Bins ---------------------------- */
 | |
| 
 | |
| #define is_small(s)         (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
 | |
| #define small_index(s)      ((s)  >> SMALLBIN_SHIFT)
 | |
| #define small_index2size(i) ((i)  << SMALLBIN_SHIFT)
 | |
| #define MIN_SMALL_INDEX     (small_index(MIN_CHUNK_SIZE))
 | |
| 
 | |
| /* addressing by index. See above about smallbin repositioning */
 | |
| #define smallbin_at(M, i)   ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
 | |
| #define treebin_at(M,i)     (&((M)->treebins[i]))
 | |
| 
 | |
| /* assign tree index for size S to variable I. Use x86 asm if possible  */
 | |
| #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
 | |
| #define compute_tree_index(S, I)\
 | |
| {\
 | |
|   unsigned int X = S >> TREEBIN_SHIFT;\
 | |
|   if (X == 0)\
 | |
|     I = 0;\
 | |
|   else if (X > 0xFFFF)\
 | |
|     I = NTREEBINS-1;\
 | |
|   else {\
 | |
|     unsigned int K;\
 | |
|     __asm__("bsrl\t%1, %0\n\t" : "=r" (K) : "rm"  (X));\
 | |
|     I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
 | |
|   }\
 | |
| }
 | |
| 
 | |
| #elif defined (__INTEL_COMPILER)
 | |
| #define compute_tree_index(S, I)\
 | |
| {\
 | |
|   size_t X = S >> TREEBIN_SHIFT;\
 | |
|   if (X == 0)\
 | |
|     I = 0;\
 | |
|   else if (X > 0xFFFF)\
 | |
|     I = NTREEBINS-1;\
 | |
|   else {\
 | |
|     unsigned int K = _bit_scan_reverse (X); \
 | |
|     I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
 | |
|   }\
 | |
| }
 | |
| 
 | |
| #elif defined(_MSC_VER) && _MSC_VER>=1300
 | |
| #define compute_tree_index(S, I)\
 | |
| {\
 | |
|   size_t X = S >> TREEBIN_SHIFT;\
 | |
|   if (X == 0)\
 | |
|     I = 0;\
 | |
|   else if (X > 0xFFFF)\
 | |
|     I = NTREEBINS-1;\
 | |
|   else {\
 | |
|     unsigned int K;\
 | |
|     _BitScanReverse((DWORD *) &K, X);\
 | |
|     I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
 | |
|   }\
 | |
| }
 | |
| 
 | |
| #else /* GNUC */
 | |
| #define compute_tree_index(S, I)\
 | |
| {\
 | |
|   size_t X = S >> TREEBIN_SHIFT;\
 | |
|   if (X == 0)\
 | |
|     I = 0;\
 | |
|   else if (X > 0xFFFF)\
 | |
|     I = NTREEBINS-1;\
 | |
|   else {\
 | |
|     unsigned int Y = (unsigned int)X;\
 | |
|     unsigned int N = ((Y - 0x100) >> 16) & 8;\
 | |
|     unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
 | |
|     N += K;\
 | |
|     N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
 | |
|     K = 14 - N + ((Y <<= K) >> 15);\
 | |
|     I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
 | |
|   }\
 | |
| }
 | |
| #endif /* GNUC */
 | |
| 
 | |
| /* Bit representing maximum resolved size in a treebin at i */
 | |
| #define bit_for_tree_index(i) \
 | |
|    (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
 | |
| 
 | |
| /* Shift placing maximum resolved bit in a treebin at i as sign bit */
 | |
| #define leftshift_for_tree_index(i) \
 | |
|    ((i == NTREEBINS-1)? 0 : \
 | |
|     ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
 | |
| 
 | |
| /* The size of the smallest chunk held in bin with index i */
 | |
| #define minsize_for_tree_index(i) \
 | |
|    ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) |  \
 | |
|    (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
 | |
| 
 | |
| 
 | |
| /* ------------------------ Operations on bin maps ----------------------- */
 | |
| 
 | |
| /* bit corresponding to given index */
 | |
| #define idx2bit(i)              ((binmap_t)(1) << (i))
 | |
| 
 | |
| /* Mark/Clear bits with given index */
 | |
| #define mark_smallmap(M,i)      ((M)->smallmap |=  idx2bit(i))
 | |
| #define clear_smallmap(M,i)     ((M)->smallmap &= ~idx2bit(i))
 | |
| #define smallmap_is_marked(M,i) ((M)->smallmap &   idx2bit(i))
 | |
| 
 | |
| #define mark_treemap(M,i)       ((M)->treemap  |=  idx2bit(i))
 | |
| #define clear_treemap(M,i)      ((M)->treemap  &= ~idx2bit(i))
 | |
| #define treemap_is_marked(M,i)  ((M)->treemap  &   idx2bit(i))
 | |
| 
 | |
| /* isolate the least set bit of a bitmap */
 | |
| #define least_bit(x)         ((x) & -(x))
 | |
| 
 | |
| /* mask with all bits to left of least bit of x on */
 | |
| #define left_bits(x)         ((x<<1) | -(x<<1))
 | |
| 
 | |
| /* mask with all bits to left of or equal to least bit of x on */
 | |
| #define same_or_left_bits(x) ((x) | -(x))
 | |
| 
 | |
| /* index corresponding to given bit. Use x86 asm if possible */
 | |
| 
 | |
| #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
 | |
| #define compute_bit2idx(X, I)\
 | |
| {\
 | |
|   unsigned int J;\
 | |
|   __asm__("bsfl\t%1, %0\n\t" : "=r" (J) : "rm" (X));\
 | |
|   I = (bindex_t)J;\
 | |
| }
 | |
| 
 | |
| #elif defined (__INTEL_COMPILER)
 | |
| #define compute_bit2idx(X, I)\
 | |
| {\
 | |
|   unsigned int J;\
 | |
|   J = _bit_scan_forward (X); \
 | |
|   I = (bindex_t)J;\
 | |
| }
 | |
| 
 | |
| #elif defined(_MSC_VER) && _MSC_VER>=1300
 | |
| #define compute_bit2idx(X, I)\
 | |
| {\
 | |
|   unsigned int J;\
 | |
|   _BitScanForward((DWORD *) &J, X);\
 | |
|   I = (bindex_t)J;\
 | |
| }
 | |
| 
 | |
| #elif USE_BUILTIN_FFS
 | |
| #define compute_bit2idx(X, I) I = ffs(X)-1
 | |
| 
 | |
| #else
 | |
| #define compute_bit2idx(X, I)\
 | |
| {\
 | |
|   unsigned int Y = X - 1;\
 | |
|   unsigned int K = Y >> (16-4) & 16;\
 | |
|   unsigned int N = K;        Y >>= K;\
 | |
|   N += K = Y >> (8-3) &  8;  Y >>= K;\
 | |
|   N += K = Y >> (4-2) &  4;  Y >>= K;\
 | |
|   N += K = Y >> (2-1) &  2;  Y >>= K;\
 | |
|   N += K = Y >> (1-0) &  1;  Y >>= K;\
 | |
|   I = (bindex_t)(N + Y);\
 | |
| }
 | |
| #endif /* GNUC */
 | |
| 
 | |
| 
 | |
| /* ----------------------- Runtime Check Support ------------------------- */
 | |
| 
 | |
| /*
 | |
|   For security, the main invariant is that malloc/free/etc never
 | |
|   writes to a static address other than malloc_state, unless static
 | |
|   malloc_state itself has been corrupted, which cannot occur via
 | |
|   malloc (because of these checks). In essence this means that we
 | |
|   believe all pointers, sizes, maps etc held in malloc_state, but
 | |
|   check all of those linked or offsetted from other embedded data
 | |
|   structures.  These checks are interspersed with main code in a way
 | |
|   that tends to minimize their run-time cost.
 | |
| 
 | |
|   When FOOTERS is defined, in addition to range checking, we also
 | |
|   verify footer fields of inuse chunks, which can be used guarantee
 | |
|   that the mstate controlling malloc/free is intact.  This is a
 | |
|   streamlined version of the approach described by William Robertson
 | |
|   et al in "Run-time Detection of Heap-based Overflows" LISA'03
 | |
|   http://www.usenix.org/events/lisa03/tech/robertson.html The footer
 | |
|   of an inuse chunk holds the xor of its mstate and a random seed,
 | |
|   that is checked upon calls to free() and realloc().  This is
 | |
|   (probablistically) unguessable from outside the program, but can be
 | |
|   computed by any code successfully malloc'ing any chunk, so does not
 | |
|   itself provide protection against code that has already broken
 | |
|   security through some other means.  Unlike Robertson et al, we
 | |
|   always dynamically check addresses of all offset chunks (previous,
 | |
|   next, etc). This turns out to be cheaper than relying on hashes.
 | |
| */
 | |
| 
 | |
| #if !INSECURE
 | |
| /* Check if address a is at least as high as any from MORECORE or MMAP */
 | |
| #define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
 | |
| /* Check if address of next chunk n is higher than base chunk p */
 | |
| #define ok_next(p, n)    ((char*)(p) < (char*)(n))
 | |
| /* Check if p has its cinuse bit on */
 | |
| #define ok_cinuse(p)     cinuse(p)
 | |
| /* Check if p has its pinuse bit on */
 | |
| #define ok_pinuse(p)     pinuse(p)
 | |
| 
 | |
| #else /* !INSECURE */
 | |
| #define ok_address(M, a) (1)
 | |
| #define ok_next(b, n)    (1)
 | |
| #define ok_cinuse(p)     (1)
 | |
| #define ok_pinuse(p)     (1)
 | |
| #endif /* !INSECURE */
 | |
| 
 | |
| #if (FOOTERS && !INSECURE)
 | |
| /* Check if (alleged) mstate m has expected magic field */
 | |
| #define ok_magic(M)      ((M)->magic == mparams.magic)
 | |
| #else  /* (FOOTERS && !INSECURE) */
 | |
| #define ok_magic(M)      (1)
 | |
| #endif /* (FOOTERS && !INSECURE) */
 | |
| 
 | |
| 
 | |
| /* In gcc, use __builtin_expect to minimize impact of checks */
 | |
| #if !INSECURE
 | |
| #if defined(__GNUC__) && __GNUC__ >= 3
 | |
| #define RTCHECK(e)  __builtin_expect(e, 1)
 | |
| #else /* GNUC */
 | |
| #define RTCHECK(e)  (e)
 | |
| #endif /* GNUC */
 | |
| #else /* !INSECURE */
 | |
| #define RTCHECK(e)  (1)
 | |
| #endif /* !INSECURE */
 | |
| 
 | |
| /* macros to set up inuse chunks with or without footers */
 | |
| 
 | |
| #if !FOOTERS
 | |
| 
 | |
| #define mark_inuse_foot(M,p,s)
 | |
| 
 | |
| /* Set cinuse bit and pinuse bit of next chunk */
 | |
| #define set_inuse(M,p,s)\
 | |
|   ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
 | |
|   ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
 | |
| 
 | |
| /* Set cinuse and pinuse of this chunk and pinuse of next chunk */
 | |
| #define set_inuse_and_pinuse(M,p,s)\
 | |
|   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
 | |
|   ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
 | |
| 
 | |
| /* Set size, cinuse and pinuse bit of this chunk */
 | |
| #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
 | |
|   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
 | |
| 
 | |
| #else /* FOOTERS */
 | |
| 
 | |
| /* Set foot of inuse chunk to be xor of mstate and seed */
 | |
| #define mark_inuse_foot(M,p,s)\
 | |
|   (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
 | |
| 
 | |
| #define get_mstate_for(p)\
 | |
|   ((mstate)(((mchunkptr)((char*)(p) +\
 | |
|     (chunksize(p))))->prev_foot ^ mparams.magic))
 | |
| 
 | |
| #define set_inuse(M,p,s)\
 | |
|   ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
 | |
|   (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
 | |
|   mark_inuse_foot(M,p,s))
 | |
| 
 | |
| #define set_inuse_and_pinuse(M,p,s)\
 | |
|   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
 | |
|   (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
 | |
|  mark_inuse_foot(M,p,s))
 | |
| 
 | |
| #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
 | |
|   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
 | |
|   mark_inuse_foot(M, p, s))
 | |
| 
 | |
| #endif /* !FOOTERS */
 | |
| 
 | |
| /* ---------------------------- setting mparams -------------------------- */
 | |
| 
 | |
| /* Initialize mparams */
 | |
| static int init_mparams(void) {
 | |
| #ifdef NEED_GLOBAL_LOCK_INIT
 | |
|   if (malloc_global_mutex_status <= 0)
 | |
|     init_malloc_global_mutex();
 | |
| #endif
 | |
| 
 | |
|   ACQUIRE_MALLOC_GLOBAL_LOCK();
 | |
|   if (mparams.magic == 0) {
 | |
|     size_t magic;
 | |
|     size_t psize;
 | |
|     size_t gsize;
 | |
| 
 | |
| #ifndef WIN32
 | |
|     psize = malloc_getpagesize;
 | |
|     gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize);
 | |
| #else /* WIN32 */
 | |
|     {
 | |
|       SYSTEM_INFO system_info;
 | |
|       GetSystemInfo(&system_info);
 | |
|       psize = system_info.dwPageSize;
 | |
|       gsize = ((DEFAULT_GRANULARITY != 0)?
 | |
| 	       DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);
 | |
|     }
 | |
| #endif /* WIN32 */
 | |
| 
 | |
|     /* Sanity-check configuration:
 | |
|        size_t must be unsigned and as wide as pointer type.
 | |
|        ints must be at least 4 bytes.
 | |
|        alignment must be at least 8.
 | |
|        Alignment, min chunk size, and page size must all be powers of 2.
 | |
|     */
 | |
|     if ((sizeof(size_t) != sizeof(char*)) ||
 | |
| 	(MAX_SIZE_T < MIN_CHUNK_SIZE)  ||
 | |
| 	(sizeof(int) < 4)  ||
 | |
| 	(MALLOC_ALIGNMENT < (size_t)8U) ||
 | |
| 	((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
 | |
| 	((MCHUNK_SIZE      & (MCHUNK_SIZE-SIZE_T_ONE))      != 0) ||
 | |
| 	((gsize            & (gsize-SIZE_T_ONE))            != 0) ||
 | |
| 	((psize            & (psize-SIZE_T_ONE))            != 0))
 | |
|       ABORT;
 | |
| 
 | |
|     mparams.granularity = gsize;
 | |
|     mparams.page_size = psize;
 | |
|     mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
 | |
|     mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
 | |
| #if MORECORE_CONTIGUOUS
 | |
|     mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
 | |
| #else  /* MORECORE_CONTIGUOUS */
 | |
|     mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
 | |
| #endif /* MORECORE_CONTIGUOUS */
 | |
| 
 | |
| #if !ONLY_MSPACES
 | |
|     /* Set up lock for main malloc area */
 | |
|     gm->mflags = mparams.default_mflags;
 | |
|     (void)INITIAL_LOCK(&gm->mutex);
 | |
| #endif
 | |
| 
 | |
| #if (FOOTERS && !INSECURE)
 | |
|     {
 | |
| #if USE_DEV_RANDOM
 | |
|       int fd;
 | |
|       unsigned char buf[sizeof(size_t)];
 | |
|       /* Try to use /dev/urandom, else fall back on using time */
 | |
|       if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
 | |
| 	  read(fd, buf, sizeof(buf)) == sizeof(buf)) {
 | |
| 	magic = *((size_t *) buf);
 | |
| 	close(fd);
 | |
|       }
 | |
|       else
 | |
| #endif /* USE_DEV_RANDOM */
 | |
| #ifdef WIN32
 | |
| 	magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U);
 | |
| #else
 | |
|       magic = (size_t)(time(0) ^ (size_t)0x55555555U);
 | |
| #endif
 | |
|       magic |= (size_t)8U;    /* ensure nonzero */
 | |
|       magic &= ~(size_t)7U;   /* improve chances of fault for bad values */
 | |
|     }
 | |
| #else /* (FOOTERS && !INSECURE) */
 | |
|     magic = (size_t)0x58585858U;
 | |
| #endif /* (FOOTERS && !INSECURE) */
 | |
| 
 | |
|     mparams.magic = magic;
 | |
|   }
 | |
| 
 | |
|   RELEASE_MALLOC_GLOBAL_LOCK();
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /* support for mallopt */
 | |
| static int change_mparam(int param_number, int value) {
 | |
|   size_t val = (value == -1)? MAX_SIZE_T : (size_t)value;
 | |
|   ensure_initialization();
 | |
|   switch(param_number) {
 | |
|   case M_TRIM_THRESHOLD:
 | |
|     mparams.trim_threshold = val;
 | |
|     return 1;
 | |
|   case M_GRANULARITY:
 | |
|     if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
 | |
|       mparams.granularity = val;
 | |
|       return 1;
 | |
|     }
 | |
|     else
 | |
|       return 0;
 | |
|   case M_MMAP_THRESHOLD:
 | |
|     mparams.mmap_threshold = val;
 | |
|     return 1;
 | |
|   default:
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if DEBUG
 | |
| /* ------------------------- Debugging Support --------------------------- */
 | |
| 
 | |
| /* Check properties of any chunk, whether free, inuse, mmapped etc  */
 | |
| static void do_check_any_chunk(mstate m, mchunkptr p) {
 | |
|   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
 | |
|   assert(ok_address(m, p));
 | |
| }
 | |
| 
 | |
| /* Check properties of top chunk */
 | |
| static void do_check_top_chunk(mstate m, mchunkptr p) {
 | |
|   msegmentptr sp = segment_holding(m, (char*)p);
 | |
|   size_t  sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */
 | |
|   assert(sp != 0);
 | |
|   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
 | |
|   assert(ok_address(m, p));
 | |
|   assert(sz == m->topsize);
 | |
|   assert(sz > 0);
 | |
|   assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
 | |
|   assert(pinuse(p));
 | |
|   assert(!pinuse(chunk_plus_offset(p, sz)));
 | |
| }
 | |
| 
 | |
| /* Check properties of (inuse) mmapped chunks */
 | |
| static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
 | |
|   size_t  sz = chunksize(p);
 | |
|   size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
 | |
|   assert(is_mmapped(p));
 | |
|   assert(use_mmap(m));
 | |
|   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
 | |
|   assert(ok_address(m, p));
 | |
|   assert(!is_small(sz));
 | |
|   assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
 | |
|   assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
 | |
|   assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
 | |
| }
 | |
| 
 | |
| /* Check properties of inuse chunks */
 | |
| static void do_check_inuse_chunk(mstate m, mchunkptr p) {
 | |
|   do_check_any_chunk(m, p);
 | |
|   assert(cinuse(p));
 | |
|   assert(next_pinuse(p));
 | |
|   /* If not pinuse and not mmapped, previous chunk has OK offset */
 | |
|   assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
 | |
|   if (is_mmapped(p))
 | |
|     do_check_mmapped_chunk(m, p);
 | |
| }
 | |
| 
 | |
| /* Check properties of free chunks */
 | |
| static void do_check_free_chunk(mstate m, mchunkptr p) {
 | |
|   size_t sz = chunksize(p);
 | |
|   mchunkptr next = chunk_plus_offset(p, sz);
 | |
|   do_check_any_chunk(m, p);
 | |
|   assert(!cinuse(p));
 | |
|   assert(!next_pinuse(p));
 | |
|   assert (!is_mmapped(p));
 | |
|   if (p != m->dv && p != m->top) {
 | |
|     if (sz >= MIN_CHUNK_SIZE) {
 | |
|       assert((sz & CHUNK_ALIGN_MASK) == 0);
 | |
|       assert(is_aligned(chunk2mem(p)));
 | |
|       assert(next->prev_foot == sz);
 | |
|       assert(pinuse(p));
 | |
|       assert (next == m->top || cinuse(next));
 | |
|       assert(p->fd->bk == p);
 | |
|       assert(p->bk->fd == p);
 | |
|     }
 | |
|     else  /* markers are always of size SIZE_T_SIZE */
 | |
|       assert(sz == SIZE_T_SIZE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Check properties of malloced chunks at the point they are malloced */
 | |
| static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
 | |
|   if (mem != 0) {
 | |
|     mchunkptr p = mem2chunk(mem);
 | |
|     size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
 | |
|     do_check_inuse_chunk(m, p);
 | |
|     assert((sz & CHUNK_ALIGN_MASK) == 0);
 | |
|     assert(sz >= MIN_CHUNK_SIZE);
 | |
|     assert(sz >= s);
 | |
|     /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
 | |
|     assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Check a tree and its subtrees.  */
 | |
| static void do_check_tree(mstate m, tchunkptr t) {
 | |
|   tchunkptr head = 0;
 | |
|   tchunkptr u = t;
 | |
|   bindex_t tindex = t->index;
 | |
|   size_t tsize = chunksize(t);
 | |
|   bindex_t idx;
 | |
|   compute_tree_index(tsize, idx);
 | |
|   assert(tindex == idx);
 | |
|   assert(tsize >= MIN_LARGE_SIZE);
 | |
|   assert(tsize >= minsize_for_tree_index(idx));
 | |
|   assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
 | |
| 
 | |
|   do { /* traverse through chain of same-sized nodes */
 | |
|     do_check_any_chunk(m, ((mchunkptr)u));
 | |
|     assert(u->index == tindex);
 | |
|     assert(chunksize(u) == tsize);
 | |
|     assert(!cinuse(u));
 | |
|     assert(!next_pinuse(u));
 | |
|     assert(u->fd->bk == u);
 | |
|     assert(u->bk->fd == u);
 | |
|     if (u->parent == 0) {
 | |
|       assert(u->child[0] == 0);
 | |
|       assert(u->child[1] == 0);
 | |
|     }
 | |
|     else {
 | |
|       assert(head == 0); /* only one node on chain has parent */
 | |
|       head = u;
 | |
|       assert(u->parent != u);
 | |
|       assert (u->parent->child[0] == u ||
 | |
| 	      u->parent->child[1] == u ||
 | |
| 	      *((tbinptr*)(u->parent)) == u);
 | |
|       if (u->child[0] != 0) {
 | |
| 	assert(u->child[0]->parent == u);
 | |
| 	assert(u->child[0] != u);
 | |
| 	do_check_tree(m, u->child[0]);
 | |
|       }
 | |
|       if (u->child[1] != 0) {
 | |
| 	assert(u->child[1]->parent == u);
 | |
| 	assert(u->child[1] != u);
 | |
| 	do_check_tree(m, u->child[1]);
 | |
|       }
 | |
|       if (u->child[0] != 0 && u->child[1] != 0) {
 | |
| 	assert(chunksize(u->child[0]) < chunksize(u->child[1]));
 | |
|       }
 | |
|     }
 | |
|     u = u->fd;
 | |
|   } while (u != t);
 | |
|   assert(head != 0);
 | |
| }
 | |
| 
 | |
| /*  Check all the chunks in a treebin.  */
 | |
| static void do_check_treebin(mstate m, bindex_t i) {
 | |
|   tbinptr* tb = treebin_at(m, i);
 | |
|   tchunkptr t = *tb;
 | |
|   int empty = (m->treemap & (1U << i)) == 0;
 | |
|   if (t == 0)
 | |
|     assert(empty);
 | |
|   if (!empty)
 | |
|     do_check_tree(m, t);
 | |
| }
 | |
| 
 | |
| /*  Check all the chunks in a smallbin.  */
 | |
| static void do_check_smallbin(mstate m, bindex_t i) {
 | |
|   sbinptr b = smallbin_at(m, i);
 | |
|   mchunkptr p = b->bk;
 | |
|   unsigned int empty = (m->smallmap & (1U << i)) == 0;
 | |
|   if (p == b)
 | |
|     assert(empty);
 | |
|   if (!empty) {
 | |
|     for (; p != b; p = p->bk) {
 | |
|       size_t size = chunksize(p);
 | |
|       mchunkptr q;
 | |
|       /* each chunk claims to be free */
 | |
|       do_check_free_chunk(m, p);
 | |
|       /* chunk belongs in bin */
 | |
|       assert(small_index(size) == i);
 | |
|       assert(p->bk == b || chunksize(p->bk) == chunksize(p));
 | |
|       /* chunk is followed by an inuse chunk */
 | |
|       q = next_chunk(p);
 | |
|       if (q->head != FENCEPOST_HEAD)
 | |
| 	do_check_inuse_chunk(m, q);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Find x in a bin. Used in other check functions. */
 | |
| static int bin_find(mstate m, mchunkptr x) {
 | |
|   size_t size = chunksize(x);
 | |
|   if (is_small(size)) {
 | |
|     bindex_t sidx = small_index(size);
 | |
|     sbinptr b = smallbin_at(m, sidx);
 | |
|     if (smallmap_is_marked(m, sidx)) {
 | |
|       mchunkptr p = b;
 | |
|       do {
 | |
| 	if (p == x)
 | |
| 	  return 1;
 | |
|       } while ((p = p->fd) != b);
 | |
|     }
 | |
|   }
 | |
|   else {
 | |
|     bindex_t tidx;
 | |
|     compute_tree_index(size, tidx);
 | |
|     if (treemap_is_marked(m, tidx)) {
 | |
|       tchunkptr t = *treebin_at(m, tidx);
 | |
|       size_t sizebits = size << leftshift_for_tree_index(tidx);
 | |
|       while (t != 0 && chunksize(t) != size) {
 | |
| 	t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
 | |
| 	sizebits <<= 1;
 | |
|       }
 | |
|       if (t != 0) {
 | |
| 	tchunkptr u = t;
 | |
| 	do {
 | |
| 	  if (u == (tchunkptr)x)
 | |
| 	    return 1;
 | |
| 	} while ((u = u->fd) != t);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* Traverse each chunk and check it; return total */
 | |
| static size_t traverse_and_check(mstate m) {
 | |
|   size_t sum = 0;
 | |
|   if (is_initialized(m)) {
 | |
|     msegmentptr s = &m->seg;
 | |
|     sum += m->topsize + TOP_FOOT_SIZE;
 | |
|     while (s != 0) {
 | |
|       mchunkptr q = align_as_chunk(s->base);
 | |
|       mchunkptr lastq = 0;
 | |
|       assert(pinuse(q));
 | |
|       while (segment_holds(s, q) &&
 | |
| 	     q != m->top && q->head != FENCEPOST_HEAD) {
 | |
| 	sum += chunksize(q);
 | |
| 	if (cinuse(q)) {
 | |
| 	  assert(!bin_find(m, q));
 | |
| 	  do_check_inuse_chunk(m, q);
 | |
| 	}
 | |
| 	else {
 | |
| 	  assert(q == m->dv || bin_find(m, q));
 | |
| 	  assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
 | |
| 	  do_check_free_chunk(m, q);
 | |
| 	}
 | |
| 	lastq = q;
 | |
| 	q = next_chunk(q);
 | |
|       }
 | |
|       s = s->next;
 | |
|     }
 | |
|   }
 | |
|   return sum;
 | |
| }
 | |
| 
 | |
| /* Check all properties of malloc_state. */
 | |
| static void do_check_malloc_state(mstate m) {
 | |
|   bindex_t i;
 | |
|   size_t total;
 | |
|   /* check bins */
 | |
|   for (i = 0; i < NSMALLBINS; ++i)
 | |
|     do_check_smallbin(m, i);
 | |
|   for (i = 0; i < NTREEBINS; ++i)
 | |
|     do_check_treebin(m, i);
 | |
| 
 | |
|   if (m->dvsize != 0) { /* check dv chunk */
 | |
|     do_check_any_chunk(m, m->dv);
 | |
|     assert(m->dvsize == chunksize(m->dv));
 | |
|     assert(m->dvsize >= MIN_CHUNK_SIZE);
 | |
|     assert(bin_find(m, m->dv) == 0);
 | |
|   }
 | |
| 
 | |
|   if (m->top != 0) {   /* check top chunk */
 | |
|     do_check_top_chunk(m, m->top);
 | |
|     /*assert(m->topsize == chunksize(m->top)); redundant */
 | |
|     assert(m->topsize > 0);
 | |
|     assert(bin_find(m, m->top) == 0);
 | |
|   }
 | |
| 
 | |
|   total = traverse_and_check(m);
 | |
|   assert(total <= m->footprint);
 | |
|   assert(m->footprint <= m->max_footprint);
 | |
| }
 | |
| #endif /* DEBUG */
 | |
| 
 | |
| /* ----------------------------- statistics ------------------------------ */
 | |
| 
 | |
| #if !NO_MALLINFO
 | |
| static struct mallinfo internal_mallinfo(mstate m) {
 | |
|   struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
 | |
|   ensure_initialization();
 | |
|   if (!PREACTION(m)) {
 | |
|     check_malloc_state(m);
 | |
|     if (is_initialized(m)) {
 | |
|       size_t nfree = SIZE_T_ONE; /* top always free */
 | |
|       size_t mfree = m->topsize + TOP_FOOT_SIZE;
 | |
|       size_t sum = mfree;
 | |
|       msegmentptr s = &m->seg;
 | |
|       while (s != 0) {
 | |
| 	mchunkptr q = align_as_chunk(s->base);
 | |
| 	while (segment_holds(s, q) &&
 | |
| 	       q != m->top && q->head != FENCEPOST_HEAD) {
 | |
| 	  size_t sz = chunksize(q);
 | |
| 	  sum += sz;
 | |
| 	  if (!cinuse(q)) {
 | |
| 	    mfree += sz;
 | |
| 	    ++nfree;
 | |
| 	  }
 | |
| 	  q = next_chunk(q);
 | |
| 	}
 | |
| 	s = s->next;
 | |
|       }
 | |
| 
 | |
|       nm.arena    = sum;
 | |
|       nm.ordblks  = nfree;
 | |
|       nm.hblkhd   = m->footprint - sum;
 | |
|       nm.usmblks  = m->max_footprint;
 | |
|       nm.uordblks = m->footprint - mfree;
 | |
|       nm.fordblks = mfree;
 | |
|       nm.keepcost = m->topsize;
 | |
|     }
 | |
| 
 | |
|     POSTACTION(m);
 | |
|   }
 | |
|   return nm;
 | |
| }
 | |
| #endif /* !NO_MALLINFO */
 | |
| 
 | |
| static void internal_malloc_stats(mstate m) {
 | |
|   ensure_initialization();
 | |
|   if (!PREACTION(m)) {
 | |
|     size_t maxfp = 0;
 | |
|     size_t fp = 0;
 | |
|     size_t used = 0;
 | |
|     check_malloc_state(m);
 | |
|     if (is_initialized(m)) {
 | |
|       msegmentptr s = &m->seg;
 | |
|       maxfp = m->max_footprint;
 | |
|       fp = m->footprint;
 | |
|       used = fp - (m->topsize + TOP_FOOT_SIZE);
 | |
| 
 | |
|       while (s != 0) {
 | |
| 	mchunkptr q = align_as_chunk(s->base);
 | |
| 	while (segment_holds(s, q) &&
 | |
| 	       q != m->top && q->head != FENCEPOST_HEAD) {
 | |
| 	  if (!cinuse(q))
 | |
| 	    used -= chunksize(q);
 | |
| 	  q = next_chunk(q);
 | |
| 	}
 | |
| 	s = s->next;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
 | |
|     fprintf(stderr, "system bytes     = %10lu\n", (unsigned long)(fp));
 | |
|     fprintf(stderr, "in use bytes     = %10lu\n", (unsigned long)(used));
 | |
| 
 | |
|     POSTACTION(m);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* ----------------------- Operations on smallbins ----------------------- */
 | |
| 
 | |
| /*
 | |
|   Various forms of linking and unlinking are defined as macros.  Even
 | |
|   the ones for trees, which are very long but have very short typical
 | |
|   paths.  This is ugly but reduces reliance on inlining support of
 | |
|   compilers.
 | |
| */
 | |
| 
 | |
| /* Link a free chunk into a smallbin  */
 | |
| #define insert_small_chunk(M, P, S) {\
 | |
|   bindex_t I  = small_index(S);\
 | |
|   mchunkptr B = smallbin_at(M, I);\
 | |
|   mchunkptr F = B;\
 | |
|   assert(S >= MIN_CHUNK_SIZE);\
 | |
|   if (!smallmap_is_marked(M, I))\
 | |
|     mark_smallmap(M, I);\
 | |
|   else if (RTCHECK(ok_address(M, B->fd)))\
 | |
|     F = B->fd;\
 | |
|   else {\
 | |
|     CORRUPTION_ERROR_ACTION(M);\
 | |
|   }\
 | |
|   B->fd = P;\
 | |
|   F->bk = P;\
 | |
|   P->fd = F;\
 | |
|   P->bk = B;\
 | |
| }
 | |
| 
 | |
| /* Unlink a chunk from a smallbin  */
 | |
| #define unlink_small_chunk(M, P, S) {\
 | |
|   mchunkptr F = P->fd;\
 | |
|   mchunkptr B = P->bk;\
 | |
|   bindex_t I = small_index(S);\
 | |
|   assert(P != B);\
 | |
|   assert(P != F);\
 | |
|   assert(chunksize(P) == small_index2size(I));\
 | |
|   if (F == B)\
 | |
|     clear_smallmap(M, I);\
 | |
|   else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
 | |
| 		   (B == smallbin_at(M,I) || ok_address(M, B)))) {\
 | |
|     F->bk = B;\
 | |
|     B->fd = F;\
 | |
|   }\
 | |
|   else {\
 | |
|     CORRUPTION_ERROR_ACTION(M);\
 | |
|   }\
 | |
| }
 | |
| 
 | |
| /* Unlink the first chunk from a smallbin */
 | |
| #define unlink_first_small_chunk(M, B, P, I) {\
 | |
|   mchunkptr F = P->fd;\
 | |
|   assert(P != B);\
 | |
|   assert(P != F);\
 | |
|   assert(chunksize(P) == small_index2size(I));\
 | |
|   if (B == F)\
 | |
|     clear_smallmap(M, I);\
 | |
|   else if (RTCHECK(ok_address(M, F))) {\
 | |
|     B->fd = F;\
 | |
|     F->bk = B;\
 | |
|   }\
 | |
|   else {\
 | |
|     CORRUPTION_ERROR_ACTION(M);\
 | |
|   }\
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Replace dv node, binning the old one */
 | |
| /* Used only when dvsize known to be small */
 | |
| #define replace_dv(M, P, S) {\
 | |
|   size_t DVS = M->dvsize;\
 | |
|   if (DVS != 0) {\
 | |
|     mchunkptr DV = M->dv;\
 | |
|     assert(is_small(DVS));\
 | |
|     insert_small_chunk(M, DV, DVS);\
 | |
|   }\
 | |
|   M->dvsize = S;\
 | |
|   M->dv = P;\
 | |
| }
 | |
| 
 | |
| /* ------------------------- Operations on trees ------------------------- */
 | |
| 
 | |
| /* Insert chunk into tree */
 | |
| #define insert_large_chunk(M, X, S) {\
 | |
|   tbinptr* H;\
 | |
|   bindex_t I;\
 | |
|   compute_tree_index(S, I);\
 | |
|   H = treebin_at(M, I);\
 | |
|   X->index = I;\
 | |
|   X->child[0] = X->child[1] = 0;\
 | |
|   if (!treemap_is_marked(M, I)) {\
 | |
|     mark_treemap(M, I);\
 | |
|     *H = X;\
 | |
|     X->parent = (tchunkptr)H;\
 | |
|     X->fd = X->bk = X;\
 | |
|   }\
 | |
|   else {\
 | |
|     tchunkptr T = *H;\
 | |
|     size_t K = S << leftshift_for_tree_index(I);\
 | |
|     for (;;) {\
 | |
|       if (chunksize(T) != S) {\
 | |
| 	tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
 | |
| 	K <<= 1;\
 | |
| 	if (*C != 0)\
 | |
| 	  T = *C;\
 | |
| 	else if (RTCHECK(ok_address(M, C))) {\
 | |
| 	  *C = X;\
 | |
| 	  X->parent = T;\
 | |
| 	  X->fd = X->bk = X;\
 | |
| 	  break;\
 | |
| 	}\
 | |
| 	else {\
 | |
| 	  CORRUPTION_ERROR_ACTION(M);\
 | |
| 	  break;\
 | |
| 	}\
 | |
|       }\
 | |
|       else {\
 | |
| 	tchunkptr F = T->fd;\
 | |
| 	if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
 | |
| 	  T->fd = F->bk = X;\
 | |
| 	  X->fd = F;\
 | |
| 	  X->bk = T;\
 | |
| 	  X->parent = 0;\
 | |
| 	  break;\
 | |
| 	}\
 | |
| 	else {\
 | |
| 	  CORRUPTION_ERROR_ACTION(M);\
 | |
| 	  break;\
 | |
| 	}\
 | |
|       }\
 | |
|     }\
 | |
|   }\
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Unlink steps:
 | |
| 
 | |
|   1. If x is a chained node, unlink it from its same-sized fd/bk links
 | |
|      and choose its bk node as its replacement.
 | |
|   2. If x was the last node of its size, but not a leaf node, it must
 | |
|      be replaced with a leaf node (not merely one with an open left or
 | |
|      right), to make sure that lefts and rights of descendants
 | |
|      correspond properly to bit masks.  We use the rightmost descendant
 | |
|      of x.  We could use any other leaf, but this is easy to locate and
 | |
|      tends to counteract removal of leftmosts elsewhere, and so keeps
 | |
|      paths shorter than minimally guaranteed.  This doesn't loop much
 | |
|      because on average a node in a tree is near the bottom.
 | |
|   3. If x is the base of a chain (i.e., has parent links) relink
 | |
|      x's parent and children to x's replacement (or null if none).
 | |
| */
 | |
| 
 | |
| #define unlink_large_chunk(M, X) {\
 | |
|   tchunkptr XP = X->parent;\
 | |
|   tchunkptr R;\
 | |
|   if (X->bk != X) {\
 | |
|     tchunkptr F = X->fd;\
 | |
|     R = X->bk;\
 | |
|     if (RTCHECK(ok_address(M, F))) {\
 | |
|       F->bk = R;\
 | |
|       R->fd = F;\
 | |
|     }\
 | |
|     else {\
 | |
|       CORRUPTION_ERROR_ACTION(M);\
 | |
|     }\
 | |
|   }\
 | |
|   else {\
 | |
|     tchunkptr* RP;\
 | |
|     if (((R = *(RP = &(X->child[1]))) != 0) ||\
 | |
| 	((R = *(RP = &(X->child[0]))) != 0)) {\
 | |
|       tchunkptr* CP;\
 | |
|       while ((*(CP = &(R->child[1])) != 0) ||\
 | |
| 	     (*(CP = &(R->child[0])) != 0)) {\
 | |
| 	R = *(RP = CP);\
 | |
|       }\
 | |
|       if (RTCHECK(ok_address(M, RP)))\
 | |
| 	*RP = 0;\
 | |
|       else {\
 | |
| 	CORRUPTION_ERROR_ACTION(M);\
 | |
|       }\
 | |
|     }\
 | |
|   }\
 | |
|   if (XP != 0) {\
 | |
|     tbinptr* H = treebin_at(M, X->index);\
 | |
|     if (X == *H) {\
 | |
|       if ((*H = R) == 0) \
 | |
| 	clear_treemap(M, X->index);\
 | |
|     }\
 | |
|     else if (RTCHECK(ok_address(M, XP))) {\
 | |
|       if (XP->child[0] == X) \
 | |
| 	XP->child[0] = R;\
 | |
|       else \
 | |
| 	XP->child[1] = R;\
 | |
|     }\
 | |
|     else\
 | |
|       CORRUPTION_ERROR_ACTION(M);\
 | |
|     if (R != 0) {\
 | |
|       if (RTCHECK(ok_address(M, R))) {\
 | |
| 	tchunkptr C0, C1;\
 | |
| 	R->parent = XP;\
 | |
| 	if ((C0 = X->child[0]) != 0) {\
 | |
| 	  if (RTCHECK(ok_address(M, C0))) {\
 | |
| 	    R->child[0] = C0;\
 | |
| 	    C0->parent = R;\
 | |
| 	  }\
 | |
| 	  else\
 | |
| 	    CORRUPTION_ERROR_ACTION(M);\
 | |
| 	}\
 | |
| 	if ((C1 = X->child[1]) != 0) {\
 | |
| 	  if (RTCHECK(ok_address(M, C1))) {\
 | |
| 	    R->child[1] = C1;\
 | |
| 	    C1->parent = R;\
 | |
| 	  }\
 | |
| 	  else\
 | |
| 	    CORRUPTION_ERROR_ACTION(M);\
 | |
| 	}\
 | |
|       }\
 | |
|       else\
 | |
| 	CORRUPTION_ERROR_ACTION(M);\
 | |
|     }\
 | |
|   }\
 | |
| }
 | |
| 
 | |
| /* Relays to large vs small bin operations */
 | |
| 
 | |
| #define insert_chunk(M, P, S)\
 | |
|   if (is_small(S)) insert_small_chunk(M, P, S)\
 | |
|   else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
 | |
| 
 | |
| #define unlink_chunk(M, P, S)\
 | |
|   if (is_small(S)) unlink_small_chunk(M, P, S)\
 | |
|   else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
 | |
| 
 | |
| 
 | |
| /* Relays to internal calls to malloc/free from realloc, memalign etc */
 | |
| 
 | |
| #if ONLY_MSPACES
 | |
| #define internal_malloc(m, b) mspace_malloc(m, b)
 | |
| #define internal_free(m, mem) mspace_free(m,mem);
 | |
| #else /* ONLY_MSPACES */
 | |
| #if MSPACES
 | |
| #define internal_malloc(m, b)\
 | |
|    (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
 | |
| #define internal_free(m, mem)\
 | |
|    if (m == gm) dlfree(mem); else mspace_free(m,mem);
 | |
| #else /* MSPACES */
 | |
| #define internal_malloc(m, b) dlmalloc(b)
 | |
| #define internal_free(m, mem) dlfree(mem)
 | |
| #endif /* MSPACES */
 | |
| #endif /* ONLY_MSPACES */
 | |
| 
 | |
| /* -----------------------  Direct-mmapping chunks ----------------------- */
 | |
| 
 | |
| /*
 | |
|   Directly mmapped chunks are set up with an offset to the start of
 | |
|   the mmapped region stored in the prev_foot field of the chunk. This
 | |
|   allows reconstruction of the required argument to MUNMAP when freed,
 | |
|   and also allows adjustment of the returned chunk to meet alignment
 | |
|   requirements (especially in memalign).  There is also enough space
 | |
|   allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
 | |
|   the PINUSE bit so frees can be checked.
 | |
| */
 | |
| 
 | |
| /* Malloc using mmap */
 | |
| static void* mmap_alloc(mstate m, size_t nb) {
 | |
|   size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
 | |
|   if (mmsize > nb) {     /* Check for wrap around 0 */
 | |
|     char* mm = (char*)(CALL_DIRECT_MMAP(mmsize));
 | |
|     if (mm != CMFAIL) {
 | |
|       size_t offset = align_offset(chunk2mem(mm));
 | |
|       size_t psize = mmsize - offset - MMAP_FOOT_PAD;
 | |
|       mchunkptr p = (mchunkptr)(mm + offset);
 | |
|       p->prev_foot = offset | IS_MMAPPED_BIT;
 | |
|       (p)->head = (psize|CINUSE_BIT);
 | |
|       mark_inuse_foot(m, p, psize);
 | |
|       chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
 | |
|       chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
 | |
| 
 | |
|       if (mm < m->least_addr)
 | |
| 	m->least_addr = mm;
 | |
|       if ((m->footprint += mmsize) > m->max_footprint)
 | |
| 	m->max_footprint = m->footprint;
 | |
|       assert(is_aligned(chunk2mem(p)));
 | |
|       check_mmapped_chunk(m, p);
 | |
|       return chunk2mem(p);
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* Realloc using mmap */
 | |
| static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
 | |
|   size_t oldsize = chunksize(oldp);
 | |
|   if (is_small(nb)) /* Can't shrink mmap regions below small size */
 | |
|     return 0;
 | |
|   /* Keep old chunk if big enough but not too big */
 | |
|   if (oldsize >= nb + SIZE_T_SIZE &&
 | |
|       (oldsize - nb) <= (mparams.granularity << 1))
 | |
|     return oldp;
 | |
|   else {
 | |
|     size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
 | |
|     size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
 | |
|     size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
 | |
|     char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
 | |
| 				  oldmmsize, newmmsize, 1);
 | |
|     if (cp != CMFAIL) {
 | |
|       mchunkptr newp = (mchunkptr)(cp + offset);
 | |
|       size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
 | |
|       newp->head = (psize|CINUSE_BIT);
 | |
|       mark_inuse_foot(m, newp, psize);
 | |
|       chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
 | |
|       chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
 | |
| 
 | |
|       if (cp < m->least_addr)
 | |
| 	m->least_addr = cp;
 | |
|       if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
 | |
| 	m->max_footprint = m->footprint;
 | |
|       check_mmapped_chunk(m, newp);
 | |
|       return newp;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* -------------------------- mspace management -------------------------- */
 | |
| 
 | |
| /* Initialize top chunk and its size */
 | |
| static void init_top(mstate m, mchunkptr p, size_t psize) {
 | |
|   /* Ensure alignment */
 | |
|   size_t offset = align_offset(chunk2mem(p));
 | |
|   p = (mchunkptr)((char*)p + offset);
 | |
|   psize -= offset;
 | |
| 
 | |
|   m->top = p;
 | |
|   m->topsize = psize;
 | |
|   p->head = psize | PINUSE_BIT;
 | |
|   /* set size of fake trailing chunk holding overhead space only once */
 | |
|   chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
 | |
|   m->trim_check = mparams.trim_threshold; /* reset on each update */
 | |
| }
 | |
| 
 | |
| /* Initialize bins for a new mstate that is otherwise zeroed out */
 | |
| static void init_bins(mstate m) {
 | |
|   /* Establish circular links for smallbins */
 | |
|   bindex_t i;
 | |
|   for (i = 0; i < NSMALLBINS; ++i) {
 | |
|     sbinptr bin = smallbin_at(m,i);
 | |
|     bin->fd = bin->bk = bin;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if PROCEED_ON_ERROR
 | |
| 
 | |
| /* default corruption action */
 | |
| static void reset_on_error(mstate m) {
 | |
|   int i;
 | |
|   ++malloc_corruption_error_count;
 | |
|   /* Reinitialize fields to forget about all memory */
 | |
|   m->smallbins = m->treebins = 0;
 | |
|   m->dvsize = m->topsize = 0;
 | |
|   m->seg.base = 0;
 | |
|   m->seg.size = 0;
 | |
|   m->seg.next = 0;
 | |
|   m->top = m->dv = 0;
 | |
|   for (i = 0; i < NTREEBINS; ++i)
 | |
|     *treebin_at(m, i) = 0;
 | |
|   init_bins(m);
 | |
| }
 | |
| #endif /* PROCEED_ON_ERROR */
 | |
| 
 | |
| /* Allocate chunk and prepend remainder with chunk in successor base. */
 | |
| static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
 | |
| 			   size_t nb) {
 | |
|   mchunkptr p = align_as_chunk(newbase);
 | |
|   mchunkptr oldfirst = align_as_chunk(oldbase);
 | |
|   size_t psize = (char*)oldfirst - (char*)p;
 | |
|   mchunkptr q = chunk_plus_offset(p, nb);
 | |
|   size_t qsize = psize - nb;
 | |
|   set_size_and_pinuse_of_inuse_chunk(m, p, nb);
 | |
| 
 | |
|   assert((char*)oldfirst > (char*)q);
 | |
|   assert(pinuse(oldfirst));
 | |
|   assert(qsize >= MIN_CHUNK_SIZE);
 | |
| 
 | |
|   /* consolidate remainder with first chunk of old base */
 | |
|   if (oldfirst == m->top) {
 | |
|     size_t tsize = m->topsize += qsize;
 | |
|     m->top = q;
 | |
|     q->head = tsize | PINUSE_BIT;
 | |
|     check_top_chunk(m, q);
 | |
|   }
 | |
|   else if (oldfirst == m->dv) {
 | |
|     size_t dsize = m->dvsize += qsize;
 | |
|     m->dv = q;
 | |
|     set_size_and_pinuse_of_free_chunk(q, dsize);
 | |
|   }
 | |
|   else {
 | |
|     if (!cinuse(oldfirst)) {
 | |
|       size_t nsize = chunksize(oldfirst);
 | |
|       unlink_chunk(m, oldfirst, nsize);
 | |
|       oldfirst = chunk_plus_offset(oldfirst, nsize);
 | |
|       qsize += nsize;
 | |
|     }
 | |
|     set_free_with_pinuse(q, qsize, oldfirst);
 | |
|     insert_chunk(m, q, qsize);
 | |
|     check_free_chunk(m, q);
 | |
|   }
 | |
| 
 | |
|   check_malloced_chunk(m, chunk2mem(p), nb);
 | |
|   return chunk2mem(p);
 | |
| }
 | |
| 
 | |
| /* Add a segment to hold a new noncontiguous region */
 | |
| static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
 | |
|   /* Determine locations and sizes of segment, fenceposts, old top */
 | |
|   char* old_top = (char*)m->top;
 | |
|   msegmentptr oldsp = segment_holding(m, old_top);
 | |
|   char* old_end = oldsp->base + oldsp->size;
 | |
|   size_t ssize = pad_request(sizeof(struct malloc_segment));
 | |
|   char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
 | |
|   size_t offset = align_offset(chunk2mem(rawsp));
 | |
|   char* asp = rawsp + offset;
 | |
|   char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
 | |
|   mchunkptr sp = (mchunkptr)csp;
 | |
|   msegmentptr ss = (msegmentptr)(chunk2mem(sp));
 | |
|   mchunkptr tnext = chunk_plus_offset(sp, ssize);
 | |
|   mchunkptr p = tnext;
 | |
|   int nfences = 0;
 | |
| 
 | |
|   /* reset top to new space */
 | |
|   init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
 | |
| 
 | |
|   /* Set up segment record */
 | |
|   assert(is_aligned(ss));
 | |
|   set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
 | |
|   *ss = m->seg; /* Push current record */
 | |
|   m->seg.base = tbase;
 | |
|   m->seg.size = tsize;
 | |
|   m->seg.sflags = mmapped;
 | |
|   m->seg.next = ss;
 | |
| 
 | |
|   /* Insert trailing fenceposts */
 | |
|   for (;;) {
 | |
|     mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
 | |
|     p->head = FENCEPOST_HEAD;
 | |
|     ++nfences;
 | |
|     if ((char*)(&(nextp->head)) < old_end)
 | |
|       p = nextp;
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
|   assert(nfences >= 2);
 | |
| 
 | |
|   /* Insert the rest of old top into a bin as an ordinary free chunk */
 | |
|   if (csp != old_top) {
 | |
|     mchunkptr q = (mchunkptr)old_top;
 | |
|     size_t psize = csp - old_top;
 | |
|     mchunkptr tn = chunk_plus_offset(q, psize);
 | |
|     set_free_with_pinuse(q, psize, tn);
 | |
|     insert_chunk(m, q, psize);
 | |
|   }
 | |
| 
 | |
|   check_top_chunk(m, m->top);
 | |
| }
 | |
| 
 | |
| /* -------------------------- System allocation -------------------------- */
 | |
| 
 | |
| /* Get memory from system using MORECORE or MMAP */
 | |
| static void* sys_alloc(mstate m, size_t nb) {
 | |
|   char* tbase = CMFAIL;
 | |
|   size_t tsize = 0;
 | |
|   flag_t mmap_flag = 0;
 | |
| 
 | |
|   ensure_initialization();
 | |
| 
 | |
|   /* Directly map large chunks */
 | |
|   if (use_mmap(m) && nb >= mparams.mmap_threshold) {
 | |
|     void* mem = mmap_alloc(m, nb);
 | |
|     if (mem != 0)
 | |
|       return mem;
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|     Try getting memory in any of three ways (in most-preferred to
 | |
|     least-preferred order):
 | |
|     1. A call to MORECORE that can normally contiguously extend memory.
 | |
|        (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
 | |
|        main space is mmapped or a previous contiguous call failed)
 | |
|     2. A call to MMAP new space (disabled if not HAVE_MMAP).
 | |
|        Note that under the default settings, if MORECORE is unable to
 | |
|        fulfill a request, and HAVE_MMAP is true, then mmap is
 | |
|        used as a noncontiguous system allocator. This is a useful backup
 | |
|        strategy for systems with holes in address spaces -- in this case
 | |
|        sbrk cannot contiguously expand the heap, but mmap may be able to
 | |
|        find space.
 | |
|     3. A call to MORECORE that cannot usually contiguously extend memory.
 | |
|        (disabled if not HAVE_MORECORE)
 | |
| 
 | |
|    In all cases, we need to request enough bytes from system to ensure
 | |
|    we can malloc nb bytes upon success, so pad with enough space for
 | |
|    top_foot, plus alignment-pad to make sure we don't lose bytes if
 | |
|    not on boundary, and round this up to a granularity unit.
 | |
|   */
 | |
| 
 | |
|   if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
 | |
|     char* br = CMFAIL;
 | |
|     msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
 | |
|     size_t asize = 0;
 | |
|     ACQUIRE_MALLOC_GLOBAL_LOCK();
 | |
| 
 | |
|     if (ss == 0) {  /* First time through or recovery */
 | |
|       char* base = (char*)CALL_MORECORE(0);
 | |
|       if (base != CMFAIL) {
 | |
| 	asize = granularity_align(nb + SYS_ALLOC_PADDING);
 | |
| 	/* Adjust to end on a page boundary */
 | |
| 	if (!is_page_aligned(base))
 | |
| 	  asize += (page_align((size_t)base) - (size_t)base);
 | |
| 	/* Can't call MORECORE if size is negative when treated as signed */
 | |
| 	if (asize < HALF_MAX_SIZE_T &&
 | |
| 	    (br = (char*)(CALL_MORECORE(asize))) == base) {
 | |
| 	  tbase = base;
 | |
| 	  tsize = asize;
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       /* Subtract out existing available top space from MORECORE request. */
 | |
|       asize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING);
 | |
|       /* Use mem here only if it did continuously extend old space */
 | |
|       if (asize < HALF_MAX_SIZE_T &&
 | |
| 	  (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
 | |
| 	tbase = br;
 | |
| 	tsize = asize;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (tbase == CMFAIL) {    /* Cope with partial failure */
 | |
|       if (br != CMFAIL) {    /* Try to use/extend the space we did get */
 | |
| 	if (asize < HALF_MAX_SIZE_T &&
 | |
| 	    asize < nb + SYS_ALLOC_PADDING) {
 | |
| 	  size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - asize);
 | |
| 	  if (esize < HALF_MAX_SIZE_T) {
 | |
| 	    char* end = (char*)CALL_MORECORE(esize);
 | |
| 	    if (end != CMFAIL)
 | |
| 	      asize += esize;
 | |
| 	    else {            /* Can't use; try to release */
 | |
| 	      (void) CALL_MORECORE(-asize);
 | |
| 	      br = CMFAIL;
 | |
| 	    }
 | |
| 	  }
 | |
| 	}
 | |
|       }
 | |
|       if (br != CMFAIL) {    /* Use the space we did get */
 | |
| 	tbase = br;
 | |
| 	tsize = asize;
 | |
|       }
 | |
|       else
 | |
| 	disable_contiguous(m); /* Don't try contiguous path in the future */
 | |
|     }
 | |
| 
 | |
|     RELEASE_MALLOC_GLOBAL_LOCK();
 | |
|   }
 | |
| 
 | |
|   if (HAVE_MMAP && tbase == CMFAIL) {  /* Try MMAP */
 | |
|     size_t rsize = granularity_align(nb + SYS_ALLOC_PADDING);
 | |
|     if (rsize > nb) { /* Fail if wraps around zero */
 | |
|       char* mp = (char*)(CALL_MMAP(rsize));
 | |
|       if (mp != CMFAIL) {
 | |
| 	tbase = mp;
 | |
| 	tsize = rsize;
 | |
| 	mmap_flag = IS_MMAPPED_BIT;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
 | |
|     size_t asize = granularity_align(nb + SYS_ALLOC_PADDING);
 | |
|     if (asize < HALF_MAX_SIZE_T) {
 | |
|       char* br = CMFAIL;
 | |
|       char* end = CMFAIL;
 | |
|       ACQUIRE_MALLOC_GLOBAL_LOCK();
 | |
|       br = (char*)(CALL_MORECORE(asize));
 | |
|       end = (char*)(CALL_MORECORE(0));
 | |
|       RELEASE_MALLOC_GLOBAL_LOCK();
 | |
|       if (br != CMFAIL && end != CMFAIL && br < end) {
 | |
| 	size_t ssize = end - br;
 | |
| 	if (ssize > nb + TOP_FOOT_SIZE) {
 | |
| 	  tbase = br;
 | |
| 	  tsize = ssize;
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (tbase != CMFAIL) {
 | |
| 
 | |
|     if ((m->footprint += tsize) > m->max_footprint)
 | |
|       m->max_footprint = m->footprint;
 | |
| 
 | |
|     if (!is_initialized(m)) { /* first-time initialization */
 | |
|       m->seg.base = m->least_addr = tbase;
 | |
|       m->seg.size = tsize;
 | |
|       m->seg.sflags = mmap_flag;
 | |
|       m->magic = mparams.magic;
 | |
|       m->release_checks = MAX_RELEASE_CHECK_RATE;
 | |
|       init_bins(m);
 | |
| #if !ONLY_MSPACES
 | |
|       if (is_global(m))
 | |
| 	init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
 | |
|       else
 | |
| #endif
 | |
|       {
 | |
| 	/* Offset top by embedded malloc_state */
 | |
| 	mchunkptr mn = next_chunk(mem2chunk(m));
 | |
| 	init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     else {
 | |
|       /* Try to merge with an existing segment */
 | |
|       msegmentptr sp = &m->seg;
 | |
|       /* Only consider most recent segment if traversal suppressed */
 | |
|       while (sp != 0 && tbase != sp->base + sp->size)
 | |
| 	sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
 | |
|       if (sp != 0 &&
 | |
| 	  !is_extern_segment(sp) &&
 | |
| 	  (sp->sflags & IS_MMAPPED_BIT) == mmap_flag &&
 | |
| 	  segment_holds(sp, m->top)) { /* append */
 | |
| 	sp->size += tsize;
 | |
| 	init_top(m, m->top, m->topsize + tsize);
 | |
|       }
 | |
|       else {
 | |
| 	if (tbase < m->least_addr)
 | |
| 	  m->least_addr = tbase;
 | |
| 	sp = &m->seg;
 | |
| 	while (sp != 0 && sp->base != tbase + tsize)
 | |
| 	  sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
 | |
| 	if (sp != 0 &&
 | |
| 	    !is_extern_segment(sp) &&
 | |
| 	    (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {
 | |
| 	  char* oldbase = sp->base;
 | |
| 	  sp->base = tbase;
 | |
| 	  sp->size += tsize;
 | |
| 	  return prepend_alloc(m, tbase, oldbase, nb);
 | |
| 	}
 | |
| 	else
 | |
| 	  add_segment(m, tbase, tsize, mmap_flag);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (nb < m->topsize) { /* Allocate from new or extended top space */
 | |
|       size_t rsize = m->topsize -= nb;
 | |
|       mchunkptr p = m->top;
 | |
|       mchunkptr r = m->top = chunk_plus_offset(p, nb);
 | |
|       r->head = rsize | PINUSE_BIT;
 | |
|       set_size_and_pinuse_of_inuse_chunk(m, p, nb);
 | |
|       check_top_chunk(m, m->top);
 | |
|       check_malloced_chunk(m, chunk2mem(p), nb);
 | |
|       return chunk2mem(p);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MALLOC_FAILURE_ACTION;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* -----------------------  system deallocation -------------------------- */
 | |
| 
 | |
| /* Unmap and unlink any mmapped segments that don't contain used chunks */
 | |
| static size_t release_unused_segments(mstate m) {
 | |
|   size_t released = 0;
 | |
|   int nsegs = 0;
 | |
|   msegmentptr pred = &m->seg;
 | |
|   msegmentptr sp = pred->next;
 | |
|   while (sp != 0) {
 | |
|     char* base = sp->base;
 | |
|     size_t size = sp->size;
 | |
|     msegmentptr next = sp->next;
 | |
|     ++nsegs;
 | |
|     if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
 | |
|       mchunkptr p = align_as_chunk(base);
 | |
|       size_t psize = chunksize(p);
 | |
|       /* Can unmap if first chunk holds entire segment and not pinned */
 | |
|       if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
 | |
| 	tchunkptr tp = (tchunkptr)p;
 | |
| 	assert(segment_holds(sp, (char*)sp));
 | |
| 	if (p == m->dv) {
 | |
| 	  m->dv = 0;
 | |
| 	  m->dvsize = 0;
 | |
| 	}
 | |
| 	else {
 | |
| 	  unlink_large_chunk(m, tp);
 | |
| 	}
 | |
| 	if (CALL_MUNMAP(base, size) == 0) {
 | |
| 	  released += size;
 | |
| 	  m->footprint -= size;
 | |
| 	  /* unlink obsoleted record */
 | |
| 	  sp = pred;
 | |
| 	  sp->next = next;
 | |
| 	}
 | |
| 	else { /* back out if cannot unmap */
 | |
| 	  insert_large_chunk(m, tp, psize);
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
|     if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */
 | |
|       break;
 | |
|     pred = sp;
 | |
|     sp = next;
 | |
|   }
 | |
|   /* Reset check counter */
 | |
|   m->release_checks = ((nsegs > MAX_RELEASE_CHECK_RATE)?
 | |
| 		       nsegs : MAX_RELEASE_CHECK_RATE);
 | |
|   return released;
 | |
| }
 | |
| 
 | |
| static int sys_trim(mstate m, size_t pad) {
 | |
|   size_t released = 0;
 | |
|   ensure_initialization();
 | |
|   if (pad < MAX_REQUEST && is_initialized(m)) {
 | |
|     pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
 | |
| 
 | |
|     if (m->topsize > pad) {
 | |
|       /* Shrink top space in granularity-size units, keeping at least one */
 | |
|       size_t unit = mparams.granularity;
 | |
|       size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
 | |
| 		      SIZE_T_ONE) * unit;
 | |
|       msegmentptr sp = segment_holding(m, (char*)m->top);
 | |
| 
 | |
|       if (!is_extern_segment(sp)) {
 | |
| 	if (is_mmapped_segment(sp)) {
 | |
| 	  if (HAVE_MMAP &&
 | |
| 	      sp->size >= extra &&
 | |
| 	      !has_segment_link(m, sp)) { /* can't shrink if pinned */
 | |
| 	    size_t newsize = sp->size - extra;
 | |
| 	    /* Prefer mremap, fall back to munmap */
 | |
| 	    if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
 | |
| 		(CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
 | |
| 	      released = extra;
 | |
| 	    }
 | |
| 	  }
 | |
| 	}
 | |
| 	else if (HAVE_MORECORE) {
 | |
| 	  if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
 | |
| 	    extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
 | |
| 	  ACQUIRE_MALLOC_GLOBAL_LOCK();
 | |
| 	  {
 | |
| 	    /* Make sure end of memory is where we last set it. */
 | |
| 	    char* old_br = (char*)(CALL_MORECORE(0));
 | |
| 	    if (old_br == sp->base + sp->size) {
 | |
| 	      char* rel_br = (char*)(CALL_MORECORE(-extra));
 | |
| 	      char* new_br = (char*)(CALL_MORECORE(0));
 | |
| 	      if (rel_br != CMFAIL && new_br < old_br)
 | |
| 		released = old_br - new_br;
 | |
| 	    }
 | |
| 	  }
 | |
| 	  RELEASE_MALLOC_GLOBAL_LOCK();
 | |
| 	}
 | |
|       }
 | |
| 
 | |
|       if (released != 0) {
 | |
| 	sp->size -= released;
 | |
| 	m->footprint -= released;
 | |
| 	init_top(m, m->top, m->topsize - released);
 | |
| 	check_top_chunk(m, m->top);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Unmap any unused mmapped segments */
 | |
|     if (HAVE_MMAP)
 | |
|       released += release_unused_segments(m);
 | |
| 
 | |
|     /* On failure, disable autotrim to avoid repeated failed future calls */
 | |
|     if (released == 0 && m->topsize > m->trim_check)
 | |
|       m->trim_check = MAX_SIZE_T;
 | |
|   }
 | |
| 
 | |
|   return (released != 0)? 1 : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ---------------------------- malloc support --------------------------- */
 | |
| 
 | |
| /* allocate a large request from the best fitting chunk in a treebin */
 | |
| static void* tmalloc_large(mstate m, size_t nb) {
 | |
|   tchunkptr v = 0;
 | |
|   size_t rsize = -nb; /* Unsigned negation */
 | |
|   tchunkptr t;
 | |
|   bindex_t idx;
 | |
|   compute_tree_index(nb, idx);
 | |
|   if ((t = *treebin_at(m, idx)) != 0) {
 | |
|     /* Traverse tree for this bin looking for node with size == nb */
 | |
|     size_t sizebits = nb << leftshift_for_tree_index(idx);
 | |
|     tchunkptr rst = 0;  /* The deepest untaken right subtree */
 | |
|     for (;;) {
 | |
|       tchunkptr rt;
 | |
|       size_t trem = chunksize(t) - nb;
 | |
|       if (trem < rsize) {
 | |
| 	v = t;
 | |
| 	if ((rsize = trem) == 0)
 | |
| 	  break;
 | |
|       }
 | |
|       rt = t->child[1];
 | |
|       t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
 | |
|       if (rt != 0 && rt != t)
 | |
| 	rst = rt;
 | |
|       if (t == 0) {
 | |
| 	t = rst; /* set t to least subtree holding sizes > nb */
 | |
| 	break;
 | |
|       }
 | |
|       sizebits <<= 1;
 | |
|     }
 | |
|   }
 | |
|   if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
 | |
|     binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
 | |
|     if (leftbits != 0) {
 | |
|       bindex_t i;
 | |
|       binmap_t leastbit = least_bit(leftbits);
 | |
|       compute_bit2idx(leastbit, i);
 | |
|       t = *treebin_at(m, i);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   while (t != 0) { /* find smallest of tree or subtree */
 | |
|     size_t trem = chunksize(t) - nb;
 | |
|     if (trem < rsize) {
 | |
|       rsize = trem;
 | |
|       v = t;
 | |
|     }
 | |
|     t = leftmost_child(t);
 | |
|   }
 | |
| 
 | |
|   /*  If dv is a better fit, return 0 so malloc will use it */
 | |
|   if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
 | |
|     if (RTCHECK(ok_address(m, v))) { /* split */
 | |
|       mchunkptr r = chunk_plus_offset(v, nb);
 | |
|       assert(chunksize(v) == rsize + nb);
 | |
|       if (RTCHECK(ok_next(v, r))) {
 | |
| 	unlink_large_chunk(m, v);
 | |
| 	if (rsize < MIN_CHUNK_SIZE)
 | |
| 	  set_inuse_and_pinuse(m, v, (rsize + nb));
 | |
| 	else {
 | |
| 	  set_size_and_pinuse_of_inuse_chunk(m, v, nb);
 | |
| 	  set_size_and_pinuse_of_free_chunk(r, rsize);
 | |
| 	  insert_chunk(m, r, rsize);
 | |
| 	}
 | |
| 	return chunk2mem(v);
 | |
|       }
 | |
|     }
 | |
|     CORRUPTION_ERROR_ACTION(m);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* allocate a small request from the best fitting chunk in a treebin */
 | |
| static void* tmalloc_small(mstate m, size_t nb) {
 | |
|   tchunkptr t, v;
 | |
|   size_t rsize;
 | |
|   bindex_t i;
 | |
|   binmap_t leastbit = least_bit(m->treemap);
 | |
|   compute_bit2idx(leastbit, i);
 | |
|   v = t = *treebin_at(m, i);
 | |
|   rsize = chunksize(t) - nb;
 | |
| 
 | |
|   while ((t = leftmost_child(t)) != 0) {
 | |
|     size_t trem = chunksize(t) - nb;
 | |
|     if (trem < rsize) {
 | |
|       rsize = trem;
 | |
|       v = t;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (RTCHECK(ok_address(m, v))) {
 | |
|     mchunkptr r = chunk_plus_offset(v, nb);
 | |
|     assert(chunksize(v) == rsize + nb);
 | |
|     if (RTCHECK(ok_next(v, r))) {
 | |
|       unlink_large_chunk(m, v);
 | |
|       if (rsize < MIN_CHUNK_SIZE)
 | |
| 	set_inuse_and_pinuse(m, v, (rsize + nb));
 | |
|       else {
 | |
| 	set_size_and_pinuse_of_inuse_chunk(m, v, nb);
 | |
| 	set_size_and_pinuse_of_free_chunk(r, rsize);
 | |
| 	replace_dv(m, r, rsize);
 | |
|       }
 | |
|       return chunk2mem(v);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CORRUPTION_ERROR_ACTION(m);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* --------------------------- realloc support --------------------------- */
 | |
| 
 | |
| static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
 | |
|   if (bytes >= MAX_REQUEST) {
 | |
|     MALLOC_FAILURE_ACTION;
 | |
|     return 0;
 | |
|   }
 | |
|   if (!PREACTION(m)) {
 | |
|     mchunkptr oldp = mem2chunk(oldmem);
 | |
|     size_t oldsize = chunksize(oldp);
 | |
|     mchunkptr next = chunk_plus_offset(oldp, oldsize);
 | |
|     mchunkptr newp = 0;
 | |
|     void* extra = 0;
 | |
| 
 | |
|     /* Try to either shrink or extend into top. Else malloc-copy-free */
 | |
| 
 | |
|     if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
 | |
| 		ok_next(oldp, next) && ok_pinuse(next))) {
 | |
|       size_t nb = request2size(bytes);
 | |
|       if (is_mmapped(oldp))
 | |
| 	newp = mmap_resize(m, oldp, nb);
 | |
|       else if (oldsize >= nb) { /* already big enough */
 | |
| 	size_t rsize = oldsize - nb;
 | |
| 	newp = oldp;
 | |
| 	if (rsize >= MIN_CHUNK_SIZE) {
 | |
| 	  mchunkptr remainder = chunk_plus_offset(newp, nb);
 | |
| 	  set_inuse(m, newp, nb);
 | |
| 	  set_inuse(m, remainder, rsize);
 | |
| 	  extra = chunk2mem(remainder);
 | |
| 	}
 | |
|       }
 | |
|       else if (next == m->top && oldsize + m->topsize > nb) {
 | |
| 	/* Expand into top */
 | |
| 	size_t newsize = oldsize + m->topsize;
 | |
| 	size_t newtopsize = newsize - nb;
 | |
| 	mchunkptr newtop = chunk_plus_offset(oldp, nb);
 | |
| 	set_inuse(m, oldp, nb);
 | |
| 	newtop->head = newtopsize |PINUSE_BIT;
 | |
| 	m->top = newtop;
 | |
| 	m->topsize = newtopsize;
 | |
| 	newp = oldp;
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       USAGE_ERROR_ACTION(m, oldmem);
 | |
|       POSTACTION(m);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     POSTACTION(m);
 | |
| 
 | |
|     if (newp != 0) {
 | |
|       if (extra != 0) {
 | |
| 	internal_free(m, extra);
 | |
|       }
 | |
|       check_inuse_chunk(m, newp);
 | |
|       return chunk2mem(newp);
 | |
|     }
 | |
|     else {
 | |
|       void* newmem = internal_malloc(m, bytes);
 | |
|       if (newmem != 0) {
 | |
| 	size_t oc = oldsize - overhead_for(oldp);
 | |
| 	memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
 | |
| 	internal_free(m, oldmem);
 | |
|       }
 | |
|       return newmem;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* --------------------------- memalign support -------------------------- */
 | |
| 
 | |
| static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
 | |
|   if (alignment <= MALLOC_ALIGNMENT)    /* Can just use malloc */
 | |
|     return internal_malloc(m, bytes);
 | |
|   if (alignment <  MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
 | |
|     alignment = MIN_CHUNK_SIZE;
 | |
|   if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
 | |
|     size_t a = MALLOC_ALIGNMENT << 1;
 | |
|     while (a < alignment) a <<= 1;
 | |
|     alignment = a;
 | |
|   }
 | |
| 
 | |
|   if (bytes >= MAX_REQUEST - alignment) {
 | |
|     if (m != 0)  { /* Test isn't needed but avoids compiler warning */
 | |
|       MALLOC_FAILURE_ACTION;
 | |
|     }
 | |
|   }
 | |
|   else {
 | |
|     size_t nb = request2size(bytes);
 | |
|     size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
 | |
|     char* mem = (char*)internal_malloc(m, req);
 | |
|     if (mem != 0) {
 | |
|       void* leader = 0;
 | |
|       void* trailer = 0;
 | |
|       mchunkptr p = mem2chunk(mem);
 | |
| 
 | |
|       if (PREACTION(m)) return 0;
 | |
|       if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
 | |
| 	/*
 | |
| 	  Find an aligned spot inside chunk.  Since we need to give
 | |
| 	  back leading space in a chunk of at least MIN_CHUNK_SIZE, if
 | |
| 	  the first calculation places us at a spot with less than
 | |
| 	  MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
 | |
| 	  We've allocated enough total room so that this is always
 | |
| 	  possible.
 | |
| 	*/
 | |
| 	char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
 | |
| 						       alignment -
 | |
| 						       SIZE_T_ONE)) &
 | |
| 					     -alignment));
 | |
| 	char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
 | |
| 	  br : br+alignment;
 | |
| 	mchunkptr newp = (mchunkptr)pos;
 | |
| 	size_t leadsize = pos - (char*)(p);
 | |
| 	size_t newsize = chunksize(p) - leadsize;
 | |
| 
 | |
| 	if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
 | |
| 	  newp->prev_foot = p->prev_foot + leadsize;
 | |
| 	  newp->head = (newsize|CINUSE_BIT);
 | |
| 	}
 | |
| 	else { /* Otherwise, give back leader, use the rest */
 | |
| 	  set_inuse(m, newp, newsize);
 | |
| 	  set_inuse(m, p, leadsize);
 | |
| 	  leader = chunk2mem(p);
 | |
| 	}
 | |
| 	p = newp;
 | |
|       }
 | |
| 
 | |
|       /* Give back spare room at the end */
 | |
|       if (!is_mmapped(p)) {
 | |
| 	size_t size = chunksize(p);
 | |
| 	if (size > nb + MIN_CHUNK_SIZE) {
 | |
| 	  size_t remainder_size = size - nb;
 | |
| 	  mchunkptr remainder = chunk_plus_offset(p, nb);
 | |
| 	  set_inuse(m, p, nb);
 | |
| 	  set_inuse(m, remainder, remainder_size);
 | |
| 	  trailer = chunk2mem(remainder);
 | |
| 	}
 | |
|       }
 | |
| 
 | |
|       assert (chunksize(p) >= nb);
 | |
|       assert((((size_t)(chunk2mem(p))) % alignment) == 0);
 | |
|       check_inuse_chunk(m, p);
 | |
|       POSTACTION(m);
 | |
|       if (leader != 0) {
 | |
| 	internal_free(m, leader);
 | |
|       }
 | |
|       if (trailer != 0) {
 | |
| 	internal_free(m, trailer);
 | |
|       }
 | |
|       return chunk2mem(p);
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* ------------------------ comalloc/coalloc support --------------------- */
 | |
| 
 | |
| static void** ialloc(mstate m,
 | |
| 		     size_t n_elements,
 | |
| 		     size_t* sizes,
 | |
| 		     int opts,
 | |
| 		     void* chunks[]) {
 | |
|   /*
 | |
|     This provides common support for independent_X routines, handling
 | |
|     all of the combinations that can result.
 | |
| 
 | |
|     The opts arg has:
 | |
|     bit 0 set if all elements are same size (using sizes[0])
 | |
|     bit 1 set if elements should be zeroed
 | |
|   */
 | |
| 
 | |
|   size_t    element_size;   /* chunksize of each element, if all same */
 | |
|   size_t    contents_size;  /* total size of elements */
 | |
|   size_t    array_size;     /* request size of pointer array */
 | |
|   void*     mem;            /* malloced aggregate space */
 | |
|   mchunkptr p;              /* corresponding chunk */
 | |
|   size_t    remainder_size; /* remaining bytes while splitting */
 | |
|   void**    marray;         /* either "chunks" or malloced ptr array */
 | |
|   mchunkptr array_chunk;    /* chunk for malloced ptr array */
 | |
|   flag_t    was_enabled;    /* to disable mmap */
 | |
|   size_t    size;
 | |
|   size_t    i;
 | |
| 
 | |
|   ensure_initialization();
 | |
|   /* compute array length, if needed */
 | |
|   if (chunks != 0) {
 | |
|     if (n_elements == 0)
 | |
|       return chunks; /* nothing to do */
 | |
|     marray = chunks;
 | |
|     array_size = 0;
 | |
|   }
 | |
|   else {
 | |
|     /* if empty req, must still return chunk representing empty array */
 | |
|     if (n_elements == 0)
 | |
|       return (void**)internal_malloc(m, 0);
 | |
|     marray = 0;
 | |
|     array_size = request2size(n_elements * (sizeof(void*)));
 | |
|   }
 | |
| 
 | |
|   /* compute total element size */
 | |
|   if (opts & 0x1) { /* all-same-size */
 | |
|     element_size = request2size(*sizes);
 | |
|     contents_size = n_elements * element_size;
 | |
|   }
 | |
|   else { /* add up all the sizes */
 | |
|     element_size = 0;
 | |
|     contents_size = 0;
 | |
|     for (i = 0; i != n_elements; ++i)
 | |
|       contents_size += request2size(sizes[i]);
 | |
|   }
 | |
| 
 | |
|   size = contents_size + array_size;
 | |
| 
 | |
|   /*
 | |
|      Allocate the aggregate chunk.  First disable direct-mmapping so
 | |
|      malloc won't use it, since we would not be able to later
 | |
|      free/realloc space internal to a segregated mmap region.
 | |
|   */
 | |
|   was_enabled = use_mmap(m);
 | |
|   disable_mmap(m);
 | |
|   mem = internal_malloc(m, size - CHUNK_OVERHEAD);
 | |
|   if (was_enabled)
 | |
|     enable_mmap(m);
 | |
|   if (mem == 0)
 | |
|     return 0;
 | |
| 
 | |
|   if (PREACTION(m)) return 0;
 | |
|   p = mem2chunk(mem);
 | |
|   remainder_size = chunksize(p);
 | |
| 
 | |
|   assert(!is_mmapped(p));
 | |
| 
 | |
|   if (opts & 0x2) {       /* optionally clear the elements */
 | |
|     memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
 | |
|   }
 | |
| 
 | |
|   /* If not provided, allocate the pointer array as final part of chunk */
 | |
|   if (marray == 0) {
 | |
|     size_t  array_chunk_size;
 | |
|     array_chunk = chunk_plus_offset(p, contents_size);
 | |
|     array_chunk_size = remainder_size - contents_size;
 | |
|     marray = (void**) (chunk2mem(array_chunk));
 | |
|     set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
 | |
|     remainder_size = contents_size;
 | |
|   }
 | |
| 
 | |
|   /* split out elements */
 | |
|   for (i = 0; ; ++i) {
 | |
|     marray[i] = chunk2mem(p);
 | |
|     if (i != n_elements-1) {
 | |
|       if (element_size != 0)
 | |
| 	size = element_size;
 | |
|       else
 | |
| 	size = request2size(sizes[i]);
 | |
|       remainder_size -= size;
 | |
|       set_size_and_pinuse_of_inuse_chunk(m, p, size);
 | |
|       p = chunk_plus_offset(p, size);
 | |
|     }
 | |
|     else { /* the final element absorbs any overallocation slop */
 | |
|       set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #if DEBUG
 | |
|   if (marray != chunks) {
 | |
|     /* final element must have exactly exhausted chunk */
 | |
|     if (element_size != 0) {
 | |
|       assert(remainder_size == element_size);
 | |
|     }
 | |
|     else {
 | |
|       assert(remainder_size == request2size(sizes[i]));
 | |
|     }
 | |
|     check_inuse_chunk(m, mem2chunk(marray));
 | |
|   }
 | |
|   for (i = 0; i != n_elements; ++i)
 | |
|     check_inuse_chunk(m, mem2chunk(marray[i]));
 | |
| 
 | |
| #endif /* DEBUG */
 | |
| 
 | |
|   POSTACTION(m);
 | |
|   return marray;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* -------------------------- public routines ---------------------------- */
 | |
| 
 | |
| #if !ONLY_MSPACES
 | |
| 
 | |
| void* dlmalloc(size_t bytes) {
 | |
|   /*
 | |
|      Basic algorithm:
 | |
|      If a small request (< 256 bytes minus per-chunk overhead):
 | |
|        1. If one exists, use a remainderless chunk in associated smallbin.
 | |
| 	  (Remainderless means that there are too few excess bytes to
 | |
| 	  represent as a chunk.)
 | |
|        2. If it is big enough, use the dv chunk, which is normally the
 | |
| 	  chunk adjacent to the one used for the most recent small request.
 | |
|        3. If one exists, split the smallest available chunk in a bin,
 | |
| 	  saving remainder in dv.
 | |
|        4. If it is big enough, use the top chunk.
 | |
|        5. If available, get memory from system and use it
 | |
|      Otherwise, for a large request:
 | |
|        1. Find the smallest available binned chunk that fits, and use it
 | |
| 	  if it is better fitting than dv chunk, splitting if necessary.
 | |
|        2. If better fitting than any binned chunk, use the dv chunk.
 | |
|        3. If it is big enough, use the top chunk.
 | |
|        4. If request size >= mmap threshold, try to directly mmap this chunk.
 | |
|        5. If available, get memory from system and use it
 | |
| 
 | |
|      The ugly goto's here ensure that postaction occurs along all paths.
 | |
|   */
 | |
| 
 | |
| #if USE_LOCKS
 | |
|   ensure_initialization(); /* initialize in sys_alloc if not using locks */
 | |
| #endif
 | |
| 
 | |
|   if (!PREACTION(gm)) {
 | |
|     void* mem;
 | |
|     size_t nb;
 | |
|     if (bytes <= MAX_SMALL_REQUEST) {
 | |
|       bindex_t idx;
 | |
|       binmap_t smallbits;
 | |
|       nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
 | |
|       idx = small_index(nb);
 | |
|       smallbits = gm->smallmap >> idx;
 | |
| 
 | |
|       if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
 | |
| 	mchunkptr b, p;
 | |
| 	idx += ~smallbits & 1;       /* Uses next bin if idx empty */
 | |
| 	b = smallbin_at(gm, idx);
 | |
| 	p = b->fd;
 | |
| 	assert(chunksize(p) == small_index2size(idx));
 | |
| 	unlink_first_small_chunk(gm, b, p, idx);
 | |
| 	set_inuse_and_pinuse(gm, p, small_index2size(idx));
 | |
| 	mem = chunk2mem(p);
 | |
| 	check_malloced_chunk(gm, mem, nb);
 | |
| 	goto postaction;
 | |
|       }
 | |
| 
 | |
|       else if (nb > gm->dvsize) {
 | |
| 	if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
 | |
| 	  mchunkptr b, p, r;
 | |
| 	  size_t rsize;
 | |
| 	  bindex_t i;
 | |
| 	  binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
 | |
| 	  binmap_t leastbit = least_bit(leftbits);
 | |
| 	  compute_bit2idx(leastbit, i);
 | |
| 	  b = smallbin_at(gm, i);
 | |
| 	  p = b->fd;
 | |
| 	  assert(chunksize(p) == small_index2size(i));
 | |
| 	  unlink_first_small_chunk(gm, b, p, i);
 | |
| 	  rsize = small_index2size(i) - nb;
 | |
| 	  /* Fit here cannot be remainderless if 4byte sizes */
 | |
| 	  if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
 | |
| 	    set_inuse_and_pinuse(gm, p, small_index2size(i));
 | |
| 	  else {
 | |
| 	    set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
 | |
| 	    r = chunk_plus_offset(p, nb);
 | |
| 	    set_size_and_pinuse_of_free_chunk(r, rsize);
 | |
| 	    replace_dv(gm, r, rsize);
 | |
| 	  }
 | |
| 	  mem = chunk2mem(p);
 | |
| 	  check_malloced_chunk(gm, mem, nb);
 | |
| 	  goto postaction;
 | |
| 	}
 | |
| 
 | |
| 	else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
 | |
| 	  check_malloced_chunk(gm, mem, nb);
 | |
| 	  goto postaction;
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
|     else if (bytes >= MAX_REQUEST)
 | |
|       nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
 | |
|     else {
 | |
|       nb = pad_request(bytes);
 | |
|       if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
 | |
| 	check_malloced_chunk(gm, mem, nb);
 | |
| 	goto postaction;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (nb <= gm->dvsize) {
 | |
|       size_t rsize = gm->dvsize - nb;
 | |
|       mchunkptr p = gm->dv;
 | |
|       if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
 | |
| 	mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
 | |
| 	gm->dvsize = rsize;
 | |
| 	set_size_and_pinuse_of_free_chunk(r, rsize);
 | |
| 	set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
 | |
|       }
 | |
|       else { /* exhaust dv */
 | |
| 	size_t dvs = gm->dvsize;
 | |
| 	gm->dvsize = 0;
 | |
| 	gm->dv = 0;
 | |
| 	set_inuse_and_pinuse(gm, p, dvs);
 | |
|       }
 | |
|       mem = chunk2mem(p);
 | |
|       check_malloced_chunk(gm, mem, nb);
 | |
|       goto postaction;
 | |
|     }
 | |
| 
 | |
|     else if (nb < gm->topsize) { /* Split top */
 | |
|       size_t rsize = gm->topsize -= nb;
 | |
|       mchunkptr p = gm->top;
 | |
|       mchunkptr r = gm->top = chunk_plus_offset(p, nb);
 | |
|       r->head = rsize | PINUSE_BIT;
 | |
|       set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
 | |
|       mem = chunk2mem(p);
 | |
|       check_top_chunk(gm, gm->top);
 | |
|       check_malloced_chunk(gm, mem, nb);
 | |
|       goto postaction;
 | |
|     }
 | |
| 
 | |
|     mem = sys_alloc(gm, nb);
 | |
| 
 | |
|   postaction:
 | |
|     POSTACTION(gm);
 | |
|     return mem;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void dlfree(void* mem) {
 | |
|   /*
 | |
|      Consolidate freed chunks with preceding or succeeding bordering
 | |
|      free chunks, if they exist, and then place in a bin.  Intermixed
 | |
|      with special cases for top, dv, mmapped chunks, and usage errors.
 | |
|   */
 | |
| 
 | |
|   if (mem != 0) {
 | |
|     mchunkptr p  = mem2chunk(mem);
 | |
| #if FOOTERS
 | |
|     mstate fm = get_mstate_for(p);
 | |
|     if (!ok_magic(fm)) {
 | |
|       USAGE_ERROR_ACTION(fm, p);
 | |
|       return;
 | |
|     }
 | |
| #else /* FOOTERS */
 | |
| #define fm gm
 | |
| #endif /* FOOTERS */
 | |
|     if (!PREACTION(fm)) {
 | |
|       check_inuse_chunk(fm, p);
 | |
|       if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
 | |
| 	size_t psize = chunksize(p);
 | |
| 	mchunkptr next = chunk_plus_offset(p, psize);
 | |
| 	if (!pinuse(p)) {
 | |
| 	  size_t prevsize = p->prev_foot;
 | |
| 	  if ((prevsize & IS_MMAPPED_BIT) != 0) {
 | |
| 	    prevsize &= ~IS_MMAPPED_BIT;
 | |
| 	    psize += prevsize + MMAP_FOOT_PAD;
 | |
| 	    if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
 | |
| 	      fm->footprint -= psize;
 | |
| 	    goto postaction;
 | |
| 	  }
 | |
| 	  else {
 | |
| 	    mchunkptr prev = chunk_minus_offset(p, prevsize);
 | |
| 	    psize += prevsize;
 | |
| 	    p = prev;
 | |
| 	    if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
 | |
| 	      if (p != fm->dv) {
 | |
| 		unlink_chunk(fm, p, prevsize);
 | |
| 	      }
 | |
| 	      else if ((next->head & INUSE_BITS) == INUSE_BITS) {
 | |
| 		fm->dvsize = psize;
 | |
| 		set_free_with_pinuse(p, psize, next);
 | |
| 		goto postaction;
 | |
| 	      }
 | |
| 	    }
 | |
| 	    else
 | |
| 	      goto erroraction;
 | |
| 	  }
 | |
| 	}
 | |
| 
 | |
| 	if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
 | |
| 	  if (!cinuse(next)) {  /* consolidate forward */
 | |
| 	    if (next == fm->top) {
 | |
| 	      size_t tsize = fm->topsize += psize;
 | |
| 	      fm->top = p;
 | |
| 	      p->head = tsize | PINUSE_BIT;
 | |
| 	      if (p == fm->dv) {
 | |
| 		fm->dv = 0;
 | |
| 		fm->dvsize = 0;
 | |
| 	      }
 | |
| 	      if (should_trim(fm, tsize))
 | |
| 		sys_trim(fm, 0);
 | |
| 	      goto postaction;
 | |
| 	    }
 | |
| 	    else if (next == fm->dv) {
 | |
| 	      size_t dsize = fm->dvsize += psize;
 | |
| 	      fm->dv = p;
 | |
| 	      set_size_and_pinuse_of_free_chunk(p, dsize);
 | |
| 	      goto postaction;
 | |
| 	    }
 | |
| 	    else {
 | |
| 	      size_t nsize = chunksize(next);
 | |
| 	      psize += nsize;
 | |
| 	      unlink_chunk(fm, next, nsize);
 | |
| 	      set_size_and_pinuse_of_free_chunk(p, psize);
 | |
| 	      if (p == fm->dv) {
 | |
| 		fm->dvsize = psize;
 | |
| 		goto postaction;
 | |
| 	      }
 | |
| 	    }
 | |
| 	  }
 | |
| 	  else
 | |
| 	    set_free_with_pinuse(p, psize, next);
 | |
| 
 | |
| 	  if (is_small(psize)) {
 | |
| 	    insert_small_chunk(fm, p, psize);
 | |
| 	    check_free_chunk(fm, p);
 | |
| 	  }
 | |
| 	  else {
 | |
| 	    tchunkptr tp = (tchunkptr)p;
 | |
| 	    insert_large_chunk(fm, tp, psize);
 | |
| 	    check_free_chunk(fm, p);
 | |
| 	    if (--fm->release_checks == 0)
 | |
| 	      release_unused_segments(fm);
 | |
| 	  }
 | |
| 	  goto postaction;
 | |
| 	}
 | |
|       }
 | |
|     erroraction:
 | |
|       USAGE_ERROR_ACTION(fm, p);
 | |
|     postaction:
 | |
|       POSTACTION(fm);
 | |
|     }
 | |
|   }
 | |
| #if !FOOTERS
 | |
| #undef fm
 | |
| #endif /* FOOTERS */
 | |
| }
 | |
| 
 | |
| void* dlcalloc(size_t n_elements, size_t elem_size) {
 | |
|   void* mem;
 | |
|   size_t req = 0;
 | |
|   if (n_elements != 0) {
 | |
|     req = n_elements * elem_size;
 | |
|     if (((n_elements | elem_size) & ~(size_t)0xffff) &&
 | |
| 	(req / n_elements != elem_size))
 | |
|       req = MAX_SIZE_T; /* force downstream failure on overflow */
 | |
|   }
 | |
|   mem = dlmalloc(req);
 | |
|   if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
 | |
|     memset(mem, 0, req);
 | |
|   return mem;
 | |
| }
 | |
| 
 | |
| void* dlrealloc(void* oldmem, size_t bytes) {
 | |
|   if (oldmem == 0)
 | |
|     return dlmalloc(bytes);
 | |
| #ifdef REALLOC_ZERO_BYTES_FREES
 | |
|   if (bytes == 0) {
 | |
|     dlfree(oldmem);
 | |
|     return 0;
 | |
|   }
 | |
| #endif /* REALLOC_ZERO_BYTES_FREES */
 | |
|   else {
 | |
| #if ! FOOTERS
 | |
|     mstate m = gm;
 | |
| #else /* FOOTERS */
 | |
|     mstate m = get_mstate_for(mem2chunk(oldmem));
 | |
|     if (!ok_magic(m)) {
 | |
|       USAGE_ERROR_ACTION(m, oldmem);
 | |
|       return 0;
 | |
|     }
 | |
| #endif /* FOOTERS */
 | |
|     return internal_realloc(m, oldmem, bytes);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void* dlmemalign(size_t alignment, size_t bytes) {
 | |
|   return internal_memalign(gm, alignment, bytes);
 | |
| }
 | |
| 
 | |
| void** dlindependent_calloc(size_t n_elements, size_t elem_size,
 | |
| 				 void* chunks[]) {
 | |
|   size_t sz = elem_size; /* serves as 1-element array */
 | |
|   return ialloc(gm, n_elements, &sz, 3, chunks);
 | |
| }
 | |
| 
 | |
| void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
 | |
| 				   void* chunks[]) {
 | |
|   return ialloc(gm, n_elements, sizes, 0, chunks);
 | |
| }
 | |
| 
 | |
| void* dlvalloc(size_t bytes) {
 | |
|   size_t pagesz;
 | |
|   ensure_initialization();
 | |
|   pagesz = mparams.page_size;
 | |
|   return dlmemalign(pagesz, bytes);
 | |
| }
 | |
| 
 | |
| void* dlpvalloc(size_t bytes) {
 | |
|   size_t pagesz;
 | |
|   ensure_initialization();
 | |
|   pagesz = mparams.page_size;
 | |
|   return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
 | |
| }
 | |
| 
 | |
| int dlmalloc_trim(size_t pad) {
 | |
|   ensure_initialization();
 | |
|   int result = 0;
 | |
|   if (!PREACTION(gm)) {
 | |
|     result = sys_trim(gm, pad);
 | |
|     POSTACTION(gm);
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| size_t dlmalloc_footprint(void) {
 | |
|   return gm->footprint;
 | |
| }
 | |
| 
 | |
| size_t dlmalloc_max_footprint(void) {
 | |
|   return gm->max_footprint;
 | |
| }
 | |
| 
 | |
| #if !NO_MALLINFO
 | |
| struct mallinfo dlmallinfo(void) {
 | |
|   return internal_mallinfo(gm);
 | |
| }
 | |
| #endif /* NO_MALLINFO */
 | |
| 
 | |
| void dlmalloc_stats() {
 | |
|   internal_malloc_stats(gm);
 | |
| }
 | |
| 
 | |
| int dlmallopt(int param_number, int value) {
 | |
|   return change_mparam(param_number, value);
 | |
| }
 | |
| 
 | |
| #endif /* !ONLY_MSPACES */
 | |
| 
 | |
| size_t dlmalloc_usable_size(void* mem) {
 | |
|   if (mem != 0) {
 | |
|     mchunkptr p = mem2chunk(mem);
 | |
|     if (cinuse(p))
 | |
|       return chunksize(p) - overhead_for(p);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* ----------------------------- user mspaces ---------------------------- */
 | |
| 
 | |
| #if MSPACES
 | |
| 
 | |
| static mstate init_user_mstate(char* tbase, size_t tsize) {
 | |
|   size_t msize = pad_request(sizeof(struct malloc_state));
 | |
|   mchunkptr mn;
 | |
|   mchunkptr msp = align_as_chunk(tbase);
 | |
|   mstate m = (mstate)(chunk2mem(msp));
 | |
|   memset(m, 0, msize);
 | |
|   (void)INITIAL_LOCK(&m->mutex);
 | |
|   msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
 | |
|   m->seg.base = m->least_addr = tbase;
 | |
|   m->seg.size = m->footprint = m->max_footprint = tsize;
 | |
|   m->magic = mparams.magic;
 | |
|   m->release_checks = MAX_RELEASE_CHECK_RATE;
 | |
|   m->mflags = mparams.default_mflags;
 | |
|   m->extp = 0;
 | |
|   m->exts = 0;
 | |
|   disable_contiguous(m);
 | |
|   init_bins(m);
 | |
|   mn = next_chunk(mem2chunk(m));
 | |
|   init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
 | |
|   check_top_chunk(m, m->top);
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| mspace create_mspace(size_t capacity, int locked) {
 | |
|   mstate m = 0;
 | |
|   size_t msize;
 | |
|   ensure_initialization();
 | |
|   msize = pad_request(sizeof(struct malloc_state));
 | |
|   if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
 | |
|     size_t rs = ((capacity == 0)? mparams.granularity :
 | |
| 		 (capacity + TOP_FOOT_SIZE + msize));
 | |
|     size_t tsize = granularity_align(rs);
 | |
|     char* tbase = (char*)(CALL_MMAP(tsize));
 | |
|     if (tbase != CMFAIL) {
 | |
|       m = init_user_mstate(tbase, tsize);
 | |
|       m->seg.sflags = IS_MMAPPED_BIT;
 | |
|       set_lock(m, locked);
 | |
|     }
 | |
|   }
 | |
|   return (mspace)m;
 | |
| }
 | |
| 
 | |
| mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
 | |
|   mstate m = 0;
 | |
|   size_t msize;
 | |
|   ensure_initialization();
 | |
|   msize = pad_request(sizeof(struct malloc_state));
 | |
|   if (capacity > msize + TOP_FOOT_SIZE &&
 | |
|       capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
 | |
|     m = init_user_mstate((char*)base, capacity);
 | |
|     m->seg.sflags = EXTERN_BIT;
 | |
|     set_lock(m, locked);
 | |
|   }
 | |
|   return (mspace)m;
 | |
| }
 | |
| 
 | |
| int mspace_mmap_large_chunks(mspace msp, int enable) {
 | |
|   int ret = 0;
 | |
|   mstate ms = (mstate)msp;
 | |
|   if (!PREACTION(ms)) {
 | |
|     if (use_mmap(ms))
 | |
|       ret = 1;
 | |
|     if (enable)
 | |
|       enable_mmap(ms);
 | |
|     else
 | |
|       disable_mmap(ms);
 | |
|     POSTACTION(ms);
 | |
|   }
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| size_t destroy_mspace(mspace msp) {
 | |
|   size_t freed = 0;
 | |
|   mstate ms = (mstate)msp;
 | |
|   if (ok_magic(ms)) {
 | |
|     msegmentptr sp = &ms->seg;
 | |
|     while (sp != 0) {
 | |
|       char* base = sp->base;
 | |
|       size_t size = sp->size;
 | |
|       flag_t flag = sp->sflags;
 | |
|       sp = sp->next;
 | |
|       if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
 | |
| 	  CALL_MUNMAP(base, size) == 0)
 | |
| 	freed += size;
 | |
|     }
 | |
|   }
 | |
|   else {
 | |
|     USAGE_ERROR_ACTION(ms,ms);
 | |
|   }
 | |
|   return freed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   mspace versions of routines are near-clones of the global
 | |
|   versions. This is not so nice but better than the alternatives.
 | |
| */
 | |
| 
 | |
| 
 | |
| void* mspace_malloc(mspace msp, size_t bytes) {
 | |
|   mstate ms = (mstate)msp;
 | |
|   if (!ok_magic(ms)) {
 | |
|     USAGE_ERROR_ACTION(ms,ms);
 | |
|     return 0;
 | |
|   }
 | |
|   if (!PREACTION(ms)) {
 | |
|     void* mem;
 | |
|     size_t nb;
 | |
|     if (bytes <= MAX_SMALL_REQUEST) {
 | |
|       bindex_t idx;
 | |
|       binmap_t smallbits;
 | |
|       nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
 | |
|       idx = small_index(nb);
 | |
|       smallbits = ms->smallmap >> idx;
 | |
| 
 | |
|       if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
 | |
| 	mchunkptr b, p;
 | |
| 	idx += ~smallbits & 1;       /* Uses next bin if idx empty */
 | |
| 	b = smallbin_at(ms, idx);
 | |
| 	p = b->fd;
 | |
| 	assert(chunksize(p) == small_index2size(idx));
 | |
| 	unlink_first_small_chunk(ms, b, p, idx);
 | |
| 	set_inuse_and_pinuse(ms, p, small_index2size(idx));
 | |
| 	mem = chunk2mem(p);
 | |
| 	check_malloced_chunk(ms, mem, nb);
 | |
| 	goto postaction;
 | |
|       }
 | |
| 
 | |
|       else if (nb > ms->dvsize) {
 | |
| 	if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
 | |
| 	  mchunkptr b, p, r;
 | |
| 	  size_t rsize;
 | |
| 	  bindex_t i;
 | |
| 	  binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
 | |
| 	  binmap_t leastbit = least_bit(leftbits);
 | |
| 	  compute_bit2idx(leastbit, i);
 | |
| 	  b = smallbin_at(ms, i);
 | |
| 	  p = b->fd;
 | |
| 	  assert(chunksize(p) == small_index2size(i));
 | |
| 	  unlink_first_small_chunk(ms, b, p, i);
 | |
| 	  rsize = small_index2size(i) - nb;
 | |
| 	  /* Fit here cannot be remainderless if 4byte sizes */
 | |
| 	  if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
 | |
| 	    set_inuse_and_pinuse(ms, p, small_index2size(i));
 | |
| 	  else {
 | |
| 	    set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
 | |
| 	    r = chunk_plus_offset(p, nb);
 | |
| 	    set_size_and_pinuse_of_free_chunk(r, rsize);
 | |
| 	    replace_dv(ms, r, rsize);
 | |
| 	  }
 | |
| 	  mem = chunk2mem(p);
 | |
| 	  check_malloced_chunk(ms, mem, nb);
 | |
| 	  goto postaction;
 | |
| 	}
 | |
| 
 | |
| 	else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
 | |
| 	  check_malloced_chunk(ms, mem, nb);
 | |
| 	  goto postaction;
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
|     else if (bytes >= MAX_REQUEST)
 | |
|       nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
 | |
|     else {
 | |
|       nb = pad_request(bytes);
 | |
|       if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
 | |
| 	check_malloced_chunk(ms, mem, nb);
 | |
| 	goto postaction;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (nb <= ms->dvsize) {
 | |
|       size_t rsize = ms->dvsize - nb;
 | |
|       mchunkptr p = ms->dv;
 | |
|       if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
 | |
| 	mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
 | |
| 	ms->dvsize = rsize;
 | |
| 	set_size_and_pinuse_of_free_chunk(r, rsize);
 | |
| 	set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
 | |
|       }
 | |
|       else { /* exhaust dv */
 | |
| 	size_t dvs = ms->dvsize;
 | |
| 	ms->dvsize = 0;
 | |
| 	ms->dv = 0;
 | |
| 	set_inuse_and_pinuse(ms, p, dvs);
 | |
|       }
 | |
|       mem = chunk2mem(p);
 | |
|       check_malloced_chunk(ms, mem, nb);
 | |
|       goto postaction;
 | |
|     }
 | |
| 
 | |
|     else if (nb < ms->topsize) { /* Split top */
 | |
|       size_t rsize = ms->topsize -= nb;
 | |
|       mchunkptr p = ms->top;
 | |
|       mchunkptr r = ms->top = chunk_plus_offset(p, nb);
 | |
|       r->head = rsize | PINUSE_BIT;
 | |
|       set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
 | |
|       mem = chunk2mem(p);
 | |
|       check_top_chunk(ms, ms->top);
 | |
|       check_malloced_chunk(ms, mem, nb);
 | |
|       goto postaction;
 | |
|     }
 | |
| 
 | |
|     mem = sys_alloc(ms, nb);
 | |
| 
 | |
|   postaction:
 | |
|     POSTACTION(ms);
 | |
|     return mem;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void mspace_free(mspace msp, void* mem) {
 | |
|   if (mem != 0) {
 | |
|     mchunkptr p  = mem2chunk(mem);
 | |
| #if FOOTERS
 | |
|     mstate fm = get_mstate_for(p);
 | |
| #else /* FOOTERS */
 | |
|     mstate fm = (mstate)msp;
 | |
| #endif /* FOOTERS */
 | |
|     if (!ok_magic(fm)) {
 | |
|       USAGE_ERROR_ACTION(fm, p);
 | |
|       return;
 | |
|     }
 | |
|     if (!PREACTION(fm)) {
 | |
|       check_inuse_chunk(fm, p);
 | |
|       if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
 | |
| 	size_t psize = chunksize(p);
 | |
| 	mchunkptr next = chunk_plus_offset(p, psize);
 | |
| 	if (!pinuse(p)) {
 | |
| 	  size_t prevsize = p->prev_foot;
 | |
| 	  if ((prevsize & IS_MMAPPED_BIT) != 0) {
 | |
| 	    prevsize &= ~IS_MMAPPED_BIT;
 | |
| 	    psize += prevsize + MMAP_FOOT_PAD;
 | |
| 	    if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
 | |
| 	      fm->footprint -= psize;
 | |
| 	    goto postaction;
 | |
| 	  }
 | |
| 	  else {
 | |
| 	    mchunkptr prev = chunk_minus_offset(p, prevsize);
 | |
| 	    psize += prevsize;
 | |
| 	    p = prev;
 | |
| 	    if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
 | |
| 	      if (p != fm->dv) {
 | |
| 		unlink_chunk(fm, p, prevsize);
 | |
| 	      }
 | |
| 	      else if ((next->head & INUSE_BITS) == INUSE_BITS) {
 | |
| 		fm->dvsize = psize;
 | |
| 		set_free_with_pinuse(p, psize, next);
 | |
| 		goto postaction;
 | |
| 	      }
 | |
| 	    }
 | |
| 	    else
 | |
| 	      goto erroraction;
 | |
| 	  }
 | |
| 	}
 | |
| 
 | |
| 	if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
 | |
| 	  if (!cinuse(next)) {  /* consolidate forward */
 | |
| 	    if (next == fm->top) {
 | |
| 	      size_t tsize = fm->topsize += psize;
 | |
| 	      fm->top = p;
 | |
| 	      p->head = tsize | PINUSE_BIT;
 | |
| 	      if (p == fm->dv) {
 | |
| 		fm->dv = 0;
 | |
| 		fm->dvsize = 0;
 | |
| 	      }
 | |
| 	      if (should_trim(fm, tsize))
 | |
| 		sys_trim(fm, 0);
 | |
| 	      goto postaction;
 | |
| 	    }
 | |
| 	    else if (next == fm->dv) {
 | |
| 	      size_t dsize = fm->dvsize += psize;
 | |
| 	      fm->dv = p;
 | |
| 	      set_size_and_pinuse_of_free_chunk(p, dsize);
 | |
| 	      goto postaction;
 | |
| 	    }
 | |
| 	    else {
 | |
| 	      size_t nsize = chunksize(next);
 | |
| 	      psize += nsize;
 | |
| 	      unlink_chunk(fm, next, nsize);
 | |
| 	      set_size_and_pinuse_of_free_chunk(p, psize);
 | |
| 	      if (p == fm->dv) {
 | |
| 		fm->dvsize = psize;
 | |
| 		goto postaction;
 | |
| 	      }
 | |
| 	    }
 | |
| 	  }
 | |
| 	  else
 | |
| 	    set_free_with_pinuse(p, psize, next);
 | |
| 
 | |
| 	  if (is_small(psize)) {
 | |
| 	    insert_small_chunk(fm, p, psize);
 | |
| 	    check_free_chunk(fm, p);
 | |
| 	  }
 | |
| 	  else {
 | |
| 	    tchunkptr tp = (tchunkptr)p;
 | |
| 	    insert_large_chunk(fm, tp, psize);
 | |
| 	    check_free_chunk(fm, p);
 | |
| 	    if (--fm->release_checks == 0)
 | |
| 	      release_unused_segments(fm);
 | |
| 	  }
 | |
| 	  goto postaction;
 | |
| 	}
 | |
|       }
 | |
|     erroraction:
 | |
|       USAGE_ERROR_ACTION(fm, p);
 | |
|     postaction:
 | |
|       POSTACTION(fm);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
 | |
|   void* mem;
 | |
|   size_t req = 0;
 | |
|   mstate ms = (mstate)msp;
 | |
|   if (!ok_magic(ms)) {
 | |
|     USAGE_ERROR_ACTION(ms,ms);
 | |
|     return 0;
 | |
|   }
 | |
|   if (n_elements != 0) {
 | |
|     req = n_elements * elem_size;
 | |
|     if (((n_elements | elem_size) & ~(size_t)0xffff) &&
 | |
| 	(req / n_elements != elem_size))
 | |
|       req = MAX_SIZE_T; /* force downstream failure on overflow */
 | |
|   }
 | |
|   mem = internal_malloc(ms, req);
 | |
|   if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
 | |
|     memset(mem, 0, req);
 | |
|   return mem;
 | |
| }
 | |
| 
 | |
| void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
 | |
|   if (oldmem == 0)
 | |
|     return mspace_malloc(msp, bytes);
 | |
| #ifdef REALLOC_ZERO_BYTES_FREES
 | |
|   if (bytes == 0) {
 | |
|     mspace_free(msp, oldmem);
 | |
|     return 0;
 | |
|   }
 | |
| #endif /* REALLOC_ZERO_BYTES_FREES */
 | |
|   else {
 | |
| #if FOOTERS
 | |
|     mchunkptr p  = mem2chunk(oldmem);
 | |
|     mstate ms = get_mstate_for(p);
 | |
| #else /* FOOTERS */
 | |
|     mstate ms = (mstate)msp;
 | |
| #endif /* FOOTERS */
 | |
|     if (!ok_magic(ms)) {
 | |
|       USAGE_ERROR_ACTION(ms,ms);
 | |
|       return 0;
 | |
|     }
 | |
|     return internal_realloc(ms, oldmem, bytes);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
 | |
|   mstate ms = (mstate)msp;
 | |
|   if (!ok_magic(ms)) {
 | |
|     USAGE_ERROR_ACTION(ms,ms);
 | |
|     return 0;
 | |
|   }
 | |
|   return internal_memalign(ms, alignment, bytes);
 | |
| }
 | |
| 
 | |
| void** mspace_independent_calloc(mspace msp, size_t n_elements,
 | |
| 				 size_t elem_size, void* chunks[]) {
 | |
|   size_t sz = elem_size; /* serves as 1-element array */
 | |
|   mstate ms = (mstate)msp;
 | |
|   if (!ok_magic(ms)) {
 | |
|     USAGE_ERROR_ACTION(ms,ms);
 | |
|     return 0;
 | |
|   }
 | |
|   return ialloc(ms, n_elements, &sz, 3, chunks);
 | |
| }
 | |
| 
 | |
| void** mspace_independent_comalloc(mspace msp, size_t n_elements,
 | |
| 				   size_t sizes[], void* chunks[]) {
 | |
|   mstate ms = (mstate)msp;
 | |
|   if (!ok_magic(ms)) {
 | |
|     USAGE_ERROR_ACTION(ms,ms);
 | |
|     return 0;
 | |
|   }
 | |
|   return ialloc(ms, n_elements, sizes, 0, chunks);
 | |
| }
 | |
| 
 | |
| int mspace_trim(mspace msp, size_t pad) {
 | |
|   int result = 0;
 | |
|   mstate ms = (mstate)msp;
 | |
|   if (ok_magic(ms)) {
 | |
|     if (!PREACTION(ms)) {
 | |
|       result = sys_trim(ms, pad);
 | |
|       POSTACTION(ms);
 | |
|     }
 | |
|   }
 | |
|   else {
 | |
|     USAGE_ERROR_ACTION(ms,ms);
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| void mspace_malloc_stats(mspace msp) {
 | |
|   mstate ms = (mstate)msp;
 | |
|   if (ok_magic(ms)) {
 | |
|     internal_malloc_stats(ms);
 | |
|   }
 | |
|   else {
 | |
|     USAGE_ERROR_ACTION(ms,ms);
 | |
|   }
 | |
| }
 | |
| 
 | |
| size_t mspace_footprint(mspace msp) {
 | |
|   size_t result = 0;
 | |
|   mstate ms = (mstate)msp;
 | |
|   if (ok_magic(ms)) {
 | |
|     result = ms->footprint;
 | |
|   }
 | |
|   else {
 | |
|     USAGE_ERROR_ACTION(ms,ms);
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| size_t mspace_max_footprint(mspace msp) {
 | |
|   size_t result = 0;
 | |
|   mstate ms = (mstate)msp;
 | |
|   if (ok_magic(ms)) {
 | |
|     result = ms->max_footprint;
 | |
|   }
 | |
|   else {
 | |
|     USAGE_ERROR_ACTION(ms,ms);
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| #if !NO_MALLINFO
 | |
| struct mallinfo mspace_mallinfo(mspace msp) {
 | |
|   mstate ms = (mstate)msp;
 | |
|   if (!ok_magic(ms)) {
 | |
|     USAGE_ERROR_ACTION(ms,ms);
 | |
|   }
 | |
|   return internal_mallinfo(ms);
 | |
| }
 | |
| #endif /* NO_MALLINFO */
 | |
| 
 | |
| size_t mspace_usable_size(void* mem) {
 | |
|   if (mem != 0) {
 | |
|     mchunkptr p = mem2chunk(mem);
 | |
|     if (cinuse(p))
 | |
|       return chunksize(p) - overhead_for(p);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int mspace_mallopt(int param_number, int value) {
 | |
|   return change_mparam(param_number, value);
 | |
| }
 | |
| 
 | |
| #endif /* MSPACES */
 | |
| 
 | |
| /* -------------------- Alternative MORECORE functions ------------------- */
 | |
| 
 | |
| /*
 | |
|   Guidelines for creating a custom version of MORECORE:
 | |
| 
 | |
|   * For best performance, MORECORE should allocate in multiples of pagesize.
 | |
|   * MORECORE may allocate more memory than requested. (Or even less,
 | |
|       but this will usually result in a malloc failure.)
 | |
|   * MORECORE must not allocate memory when given argument zero, but
 | |
|       instead return one past the end address of memory from previous
 | |
|       nonzero call.
 | |
|   * For best performance, consecutive calls to MORECORE with positive
 | |
|       arguments should return increasing addresses, indicating that
 | |
|       space has been contiguously extended.
 | |
|   * Even though consecutive calls to MORECORE need not return contiguous
 | |
|       addresses, it must be OK for malloc'ed chunks to span multiple
 | |
|       regions in those cases where they do happen to be contiguous.
 | |
|   * MORECORE need not handle negative arguments -- it may instead
 | |
|       just return MFAIL when given negative arguments.
 | |
|       Negative arguments are always multiples of pagesize. MORECORE
 | |
|       must not misinterpret negative args as large positive unsigned
 | |
|       args. You can suppress all such calls from even occurring by defining
 | |
|       MORECORE_CANNOT_TRIM,
 | |
| 
 | |
|   As an example alternative MORECORE, here is a custom allocator
 | |
|   kindly contributed for pre-OSX macOS.  It uses virtually but not
 | |
|   necessarily physically contiguous non-paged memory (locked in,
 | |
|   present and won't get swapped out).  You can use it by uncommenting
 | |
|   this section, adding some #includes, and setting up the appropriate
 | |
|   defines above:
 | |
| 
 | |
|       #define MORECORE osMoreCore
 | |
| 
 | |
|   There is also a shutdown routine that should somehow be called for
 | |
|   cleanup upon program exit.
 | |
| 
 | |
|   #define MAX_POOL_ENTRIES 100
 | |
|   #define MINIMUM_MORECORE_SIZE  (64 * 1024U)
 | |
|   static int next_os_pool;
 | |
|   void *our_os_pools[MAX_POOL_ENTRIES];
 | |
| 
 | |
|   void *osMoreCore(int size)
 | |
|   {
 | |
|     void *ptr = 0;
 | |
|     static void *sbrk_top = 0;
 | |
| 
 | |
|     if (size > 0)
 | |
|     {
 | |
|       if (size < MINIMUM_MORECORE_SIZE)
 | |
| 	 size = MINIMUM_MORECORE_SIZE;
 | |
|       if (CurrentExecutionLevel() == kTaskLevel)
 | |
| 	 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
 | |
|       if (ptr == 0)
 | |
|       {
 | |
| 	return (void *) MFAIL;
 | |
|       }
 | |
|       // save ptrs so they can be freed during cleanup
 | |
|       our_os_pools[next_os_pool] = ptr;
 | |
|       next_os_pool++;
 | |
|       ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
 | |
|       sbrk_top = (char *) ptr + size;
 | |
|       return ptr;
 | |
|     }
 | |
|     else if (size < 0)
 | |
|     {
 | |
|       // we don't currently support shrink behavior
 | |
|       return (void *) MFAIL;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       return sbrk_top;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // cleanup any allocated memory pools
 | |
|   // called as last thing before shutting down driver
 | |
| 
 | |
|   void osCleanupMem(void)
 | |
|   {
 | |
|     void **ptr;
 | |
| 
 | |
|     for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
 | |
|       if (*ptr)
 | |
|       {
 | |
| 	 PoolDeallocate(*ptr);
 | |
| 	 *ptr = 0;
 | |
|       }
 | |
|   }
 | |
| 
 | |
| */
 | |
| 
 | |
| 
 | |
| /* -----------------------------------------------------------------------
 | |
| History:
 | |
|     V2.8.4 (not yet released)
 | |
|       * Add mspace_mmap_large_chunks; thanks to Jean Brouwers
 | |
|       * Fix insufficient sys_alloc padding when using 16byte alignment
 | |
|       * Fix bad error check in mspace_footprint
 | |
|       * Adaptations for ptmalloc, courtesy of Wolfram Gloger.
 | |
|       * Reentrant spin locks, courtesy of Earl Chew and others
 | |
|       * Win32 improvements, courtesy of Niall Douglas and Earl Chew
 | |
|       * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options
 | |
|       * Extension hook in malloc_state
 | |
|       * Various small adjustments to reduce warnings on some compilers
 | |
|       * Various configuration extensions/changes for more platforms. Thanks
 | |
| 	 to all who contributed these.
 | |
| 
 | |
|     V2.8.3 Thu Sep 22 11:16:32 2005  Doug Lea  (dl at gee)
 | |
|       * Add max_footprint functions
 | |
|       * Ensure all appropriate literals are size_t
 | |
|       * Fix conditional compilation problem for some #define settings
 | |
|       * Avoid concatenating segments with the one provided
 | |
| 	in create_mspace_with_base
 | |
|       * Rename some variables to avoid compiler shadowing warnings
 | |
|       * Use explicit lock initialization.
 | |
|       * Better handling of sbrk interference.
 | |
|       * Simplify and fix segment insertion, trimming and mspace_destroy
 | |
|       * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
 | |
|       * Thanks especially to Dennis Flanagan for help on these.
 | |
| 
 | |
|     V2.8.2 Sun Jun 12 16:01:10 2005  Doug Lea  (dl at gee)
 | |
|       * Fix memalign brace error.
 | |
| 
 | |
|     V2.8.1 Wed Jun  8 16:11:46 2005  Doug Lea  (dl at gee)
 | |
|       * Fix improper #endif nesting in C++
 | |
|       * Add explicit casts needed for C++
 | |
| 
 | |
|     V2.8.0 Mon May 30 14:09:02 2005  Doug Lea  (dl at gee)
 | |
|       * Use trees for large bins
 | |
|       * Support mspaces
 | |
|       * Use segments to unify sbrk-based and mmap-based system allocation,
 | |
| 	removing need for emulation on most platforms without sbrk.
 | |
|       * Default safety checks
 | |
|       * Optional footer checks. Thanks to William Robertson for the idea.
 | |
|       * Internal code refactoring
 | |
|       * Incorporate suggestions and platform-specific changes.
 | |
| 	Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
 | |
| 	Aaron Bachmann,  Emery Berger, and others.
 | |
|       * Speed up non-fastbin processing enough to remove fastbins.
 | |
|       * Remove useless cfree() to avoid conflicts with other apps.
 | |
|       * Remove internal memcpy, memset. Compilers handle builtins better.
 | |
|       * Remove some options that no one ever used and rename others.
 | |
| 
 | |
|     V2.7.2 Sat Aug 17 09:07:30 2002  Doug Lea  (dl at gee)
 | |
|       * Fix malloc_state bitmap array misdeclaration
 | |
| 
 | |
|     V2.7.1 Thu Jul 25 10:58:03 2002  Doug Lea  (dl at gee)
 | |
|       * Allow tuning of FIRST_SORTED_BIN_SIZE
 | |
|       * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
 | |
|       * Better detection and support for non-contiguousness of MORECORE.
 | |
| 	Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
 | |
|       * Bypass most of malloc if no frees. Thanks To Emery Berger.
 | |
|       * Fix freeing of old top non-contiguous chunk im sysmalloc.
 | |
|       * Raised default trim and map thresholds to 256K.
 | |
|       * Fix mmap-related #defines. Thanks to Lubos Lunak.
 | |
|       * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
 | |
|       * Branch-free bin calculation
 | |
|       * Default trim and mmap thresholds now 256K.
 | |
| 
 | |
|     V2.7.0 Sun Mar 11 14:14:06 2001  Doug Lea  (dl at gee)
 | |
|       * Introduce independent_comalloc and independent_calloc.
 | |
| 	Thanks to Michael Pachos for motivation and help.
 | |
|       * Make optional .h file available
 | |
|       * Allow > 2GB requests on 32bit systems.
 | |
|       * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
 | |
| 	Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
 | |
| 	and Anonymous.
 | |
|       * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
 | |
| 	helping test this.)
 | |
|       * memalign: check alignment arg
 | |
|       * realloc: don't try to shift chunks backwards, since this
 | |
| 	leads to  more fragmentation in some programs and doesn't
 | |
| 	seem to help in any others.
 | |
|       * Collect all cases in malloc requiring system memory into sysmalloc
 | |
|       * Use mmap as backup to sbrk
 | |
|       * Place all internal state in malloc_state
 | |
|       * Introduce fastbins (although similar to 2.5.1)
 | |
|       * Many minor tunings and cosmetic improvements
 | |
|       * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
 | |
|       * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
 | |
| 	Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
 | |
|       * Include errno.h to support default failure action.
 | |
| 
 | |
|     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
 | |
|       * return null for negative arguments
 | |
|       * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
 | |
| 	 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
 | |
| 	  (e.g. WIN32 platforms)
 | |
| 	 * Cleanup header file inclusion for WIN32 platforms
 | |
| 	 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
 | |
| 	 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
 | |
| 	   memory allocation routines
 | |
| 	 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
 | |
| 	 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
 | |
| 	   usage of 'assert' in non-WIN32 code
 | |
| 	 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
 | |
| 	   avoid infinite loop
 | |
|       * Always call 'fREe()' rather than 'free()'
 | |
| 
 | |
|     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
 | |
|       * Fixed ordering problem with boundary-stamping
 | |
| 
 | |
|     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
 | |
|       * Added pvalloc, as recommended by H.J. Liu
 | |
|       * Added 64bit pointer support mainly from Wolfram Gloger
 | |
|       * Added anonymously donated WIN32 sbrk emulation
 | |
|       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
 | |
|       * malloc_extend_top: fix mask error that caused wastage after
 | |
| 	foreign sbrks
 | |
|       * Add linux mremap support code from HJ Liu
 | |
| 
 | |
|     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
 | |
|       * Integrated most documentation with the code.
 | |
|       * Add support for mmap, with help from
 | |
| 	Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
 | |
|       * Use last_remainder in more cases.
 | |
|       * Pack bins using idea from  colin@nyx10.cs.du.edu
 | |
|       * Use ordered bins instead of best-fit threshold
 | |
|       * Eliminate block-local decls to simplify tracing and debugging.
 | |
|       * Support another case of realloc via move into top
 | |
|       * Fix error occurring when initial sbrk_base not word-aligned.
 | |
|       * Rely on page size for units instead of SBRK_UNIT to
 | |
| 	avoid surprises about sbrk alignment conventions.
 | |
|       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
 | |
| 	(raymond@es.ele.tue.nl) for the suggestion.
 | |
|       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
 | |
|       * More precautions for cases where other routines call sbrk,
 | |
| 	courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
 | |
|       * Added macros etc., allowing use in linux libc from
 | |
| 	H.J. Lu (hjl@gnu.ai.mit.edu)
 | |
|       * Inverted this history list
 | |
| 
 | |
|     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
 | |
|       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
 | |
|       * Removed all preallocation code since under current scheme
 | |
| 	the work required to undo bad preallocations exceeds
 | |
| 	the work saved in good cases for most test programs.
 | |
|       * No longer use return list or unconsolidated bins since
 | |
| 	no scheme using them consistently outperforms those that don't
 | |
| 	given above changes.
 | |
|       * Use best fit for very large chunks to prevent some worst-cases.
 | |
|       * Added some support for debugging
 | |
| 
 | |
|     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
 | |
|       * Removed footers when chunks are in use. Thanks to
 | |
| 	Paul Wilson (wilson@cs.texas.edu) for the suggestion.
 | |
| 
 | |
|     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
 | |
|       * Added malloc_trim, with help from Wolfram Gloger
 | |
| 	(wmglo@Dent.MED.Uni-Muenchen.DE).
 | |
| 
 | |
|     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
 | |
| 
 | |
|     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
 | |
|       * realloc: try to expand in both directions
 | |
|       * malloc: swap order of clean-bin strategy;
 | |
|       * realloc: only conditionally expand backwards
 | |
|       * Try not to scavenge used bins
 | |
|       * Use bin counts as a guide to preallocation
 | |
|       * Occasionally bin return list chunks in first scan
 | |
|       * Add a few optimizations from colin@nyx10.cs.du.edu
 | |
| 
 | |
|     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
 | |
|       * faster bin computation & slightly different binning
 | |
|       * merged all consolidations to one part of malloc proper
 | |
| 	 (eliminating old malloc_find_space & malloc_clean_bin)
 | |
|       * Scan 2 returns chunks (not just 1)
 | |
|       * Propagate failure in realloc if malloc returns 0
 | |
|       * Add stuff to allow compilation on non-ANSI compilers
 | |
| 	  from kpv@research.att.com
 | |
| 
 | |
|     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
 | |
|       * removed potential for odd address access in prev_chunk
 | |
|       * removed dependency on getpagesize.h
 | |
|       * misc cosmetics and a bit more internal documentation
 | |
|       * anticosmetics: mangled names in macros to evade debugger strangeness
 | |
|       * tested on sparc, hp-700, dec-mips, rs6000
 | |
| 	  with gcc & native cc (hp, dec only) allowing
 | |
| 	  Detlefs & Zorn comparison study (in SIGPLAN Notices.)
 | |
| 
 | |
|     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
 | |
|       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
 | |
| 	 structure of old version,  but most details differ.)
 | |
| 
 | |
| */
 |