 ce9171cd63
			
		
	
	ce9171cd63
	
	
	
		
			
			Some of these were found using Lucas De Marchi's codespell tool. Others noticed by Eric Sunshine. Helped-by: Eric Sunshine <sunshine@sunshineco.com> Signed-off-by: Stefano Lattarini <stefano.lattarini@gmail.com> Signed-off-by: Jonathan Nieder <jrnieder@gmail.com> Acked-by: Matthieu Moy <Matthieu.Moy@imag.fr> Signed-off-by: Junio C Hamano <gitster@pobox.com>
		
			
				
	
	
		
			1745 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1745 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Extended regular expression matching and search library.
 | ||
|    Copyright (C) 2002-2006, 2010 Free Software Foundation, Inc.
 | ||
|    This file is part of the GNU C Library.
 | ||
|    Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
 | ||
| 
 | ||
|    The GNU C Library is free software; you can redistribute it and/or
 | ||
|    modify it under the terms of the GNU Lesser General Public
 | ||
|    License as published by the Free Software Foundation; either
 | ||
|    version 2.1 of the License, or (at your option) any later version.
 | ||
| 
 | ||
|    The GNU C Library is distributed in the hope that it will be useful,
 | ||
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | ||
|    Lesser General Public License for more details.
 | ||
| 
 | ||
|    You should have received a copy of the GNU Lesser General Public
 | ||
|    License along with the GNU C Library; if not, write to the Free
 | ||
|    Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 | ||
|    02110-1301 USA.  */
 | ||
| 
 | ||
| static void re_string_construct_common (const char *str, int len,
 | ||
| 					re_string_t *pstr,
 | ||
| 					RE_TRANSLATE_TYPE trans, int icase,
 | ||
| 					const re_dfa_t *dfa) internal_function;
 | ||
| static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa,
 | ||
| 					  const re_node_set *nodes,
 | ||
| 					  unsigned int hash) internal_function;
 | ||
| static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa,
 | ||
| 					  const re_node_set *nodes,
 | ||
| 					  unsigned int context,
 | ||
| 					  unsigned int hash) internal_function;
 | ||
| 
 | ||
| #ifdef GAWK
 | ||
| #undef MAX	/* safety */
 | ||
| static int
 | ||
| MAX(size_t a, size_t b)
 | ||
| {
 | ||
| 	return (a > b ? a : b);
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| /* Functions for string operation.  */
 | ||
| 
 | ||
| /* This function allocate the buffers.  It is necessary to call
 | ||
|    re_string_reconstruct before using the object.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| re_string_allocate (re_string_t *pstr, const char *str, int len, int init_len,
 | ||
| 		    RE_TRANSLATE_TYPE trans, int icase, const re_dfa_t *dfa)
 | ||
| {
 | ||
|   reg_errcode_t ret;
 | ||
|   int init_buf_len;
 | ||
| 
 | ||
|   /* Ensure at least one character fits into the buffers.  */
 | ||
|   if (init_len < dfa->mb_cur_max)
 | ||
|     init_len = dfa->mb_cur_max;
 | ||
|   init_buf_len = (len + 1 < init_len) ? len + 1: init_len;
 | ||
|   re_string_construct_common (str, len, pstr, trans, icase, dfa);
 | ||
| 
 | ||
|   ret = re_string_realloc_buffers (pstr, init_buf_len);
 | ||
|   if (BE (ret != REG_NOERROR, 0))
 | ||
|     return ret;
 | ||
| 
 | ||
|   pstr->word_char = dfa->word_char;
 | ||
|   pstr->word_ops_used = dfa->word_ops_used;
 | ||
|   pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str;
 | ||
|   pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len;
 | ||
|   pstr->valid_raw_len = pstr->valid_len;
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* This function allocate the buffers, and initialize them.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| re_string_construct (re_string_t *pstr, const char *str, int len,
 | ||
| 		     RE_TRANSLATE_TYPE trans, int icase, const re_dfa_t *dfa)
 | ||
| {
 | ||
|   reg_errcode_t ret;
 | ||
|   memset (pstr, '\0', sizeof (re_string_t));
 | ||
|   re_string_construct_common (str, len, pstr, trans, icase, dfa);
 | ||
| 
 | ||
|   if (len > 0)
 | ||
|     {
 | ||
|       ret = re_string_realloc_buffers (pstr, len + 1);
 | ||
|       if (BE (ret != REG_NOERROR, 0))
 | ||
| 	return ret;
 | ||
|     }
 | ||
|   pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str;
 | ||
| 
 | ||
|   if (icase)
 | ||
|     {
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       if (dfa->mb_cur_max > 1)
 | ||
| 	{
 | ||
| 	  while (1)
 | ||
| 	    {
 | ||
| 	      ret = build_wcs_upper_buffer (pstr);
 | ||
| 	      if (BE (ret != REG_NOERROR, 0))
 | ||
| 		return ret;
 | ||
| 	      if (pstr->valid_raw_len >= len)
 | ||
| 		break;
 | ||
| 	      if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max)
 | ||
| 		break;
 | ||
| 	      ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2);
 | ||
| 	      if (BE (ret != REG_NOERROR, 0))
 | ||
| 		return ret;
 | ||
| 	    }
 | ||
| 	}
 | ||
|       else
 | ||
| #endif /* RE_ENABLE_I18N  */
 | ||
| 	build_upper_buffer (pstr);
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       if (dfa->mb_cur_max > 1)
 | ||
| 	build_wcs_buffer (pstr);
 | ||
|       else
 | ||
| #endif /* RE_ENABLE_I18N  */
 | ||
| 	{
 | ||
| 	  if (trans != NULL)
 | ||
| 	    re_string_translate_buffer (pstr);
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      pstr->valid_len = pstr->bufs_len;
 | ||
| 	      pstr->valid_raw_len = pstr->bufs_len;
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Helper functions for re_string_allocate, and re_string_construct.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| re_string_realloc_buffers (re_string_t *pstr, int new_buf_len)
 | ||
| {
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   if (pstr->mb_cur_max > 1)
 | ||
|     {
 | ||
|       wint_t *new_wcs;
 | ||
| 
 | ||
|       /* Avoid overflow in realloc.  */
 | ||
|       const size_t max_object_size = MAX (sizeof (wint_t), sizeof (int));
 | ||
|       if (BE (SIZE_MAX / max_object_size < new_buf_len, 0))
 | ||
| 	return REG_ESPACE;
 | ||
| 
 | ||
|       new_wcs = re_realloc (pstr->wcs, wint_t, new_buf_len);
 | ||
|       if (BE (new_wcs == NULL, 0))
 | ||
| 	return REG_ESPACE;
 | ||
|       pstr->wcs = new_wcs;
 | ||
|       if (pstr->offsets != NULL)
 | ||
| 	{
 | ||
| 	  int *new_offsets = re_realloc (pstr->offsets, int, new_buf_len);
 | ||
| 	  if (BE (new_offsets == NULL, 0))
 | ||
| 	    return REG_ESPACE;
 | ||
| 	  pstr->offsets = new_offsets;
 | ||
| 	}
 | ||
|     }
 | ||
| #endif /* RE_ENABLE_I18N  */
 | ||
|   if (pstr->mbs_allocated)
 | ||
|     {
 | ||
|       unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char,
 | ||
| 					   new_buf_len);
 | ||
|       if (BE (new_mbs == NULL, 0))
 | ||
| 	return REG_ESPACE;
 | ||
|       pstr->mbs = new_mbs;
 | ||
|     }
 | ||
|   pstr->bufs_len = new_buf_len;
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| static void
 | ||
| internal_function
 | ||
| re_string_construct_common (const char *str, int len, re_string_t *pstr,
 | ||
| 			    RE_TRANSLATE_TYPE trans, int icase,
 | ||
| 			    const re_dfa_t *dfa)
 | ||
| {
 | ||
|   pstr->raw_mbs = (const unsigned char *) str;
 | ||
|   pstr->len = len;
 | ||
|   pstr->raw_len = len;
 | ||
|   pstr->trans = trans;
 | ||
|   pstr->icase = icase ? 1 : 0;
 | ||
|   pstr->mbs_allocated = (trans != NULL || icase);
 | ||
|   pstr->mb_cur_max = dfa->mb_cur_max;
 | ||
|   pstr->is_utf8 = dfa->is_utf8;
 | ||
|   pstr->map_notascii = dfa->map_notascii;
 | ||
|   pstr->stop = pstr->len;
 | ||
|   pstr->raw_stop = pstr->stop;
 | ||
| }
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| 
 | ||
| /* Build wide character buffer PSTR->WCS.
 | ||
|    If the byte sequence of the string are:
 | ||
|      <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3>
 | ||
|    Then wide character buffer will be:
 | ||
|      <wc1>   , WEOF    , <wc2>   , WEOF    , <wc3>
 | ||
|    We use WEOF for padding, they indicate that the position isn't
 | ||
|    a first byte of a multibyte character.
 | ||
| 
 | ||
|    Note that this function assumes PSTR->VALID_LEN elements are already
 | ||
|    built and starts from PSTR->VALID_LEN.  */
 | ||
| 
 | ||
| static void
 | ||
| internal_function
 | ||
| build_wcs_buffer (re_string_t *pstr)
 | ||
| {
 | ||
| #ifdef _LIBC
 | ||
|   unsigned char buf[MB_LEN_MAX];
 | ||
|   assert (MB_LEN_MAX >= pstr->mb_cur_max);
 | ||
| #else
 | ||
|   unsigned char buf[64];
 | ||
| #endif
 | ||
|   mbstate_t prev_st;
 | ||
|   int byte_idx, end_idx, remain_len;
 | ||
|   size_t mbclen;
 | ||
| 
 | ||
|   /* Build the buffers from pstr->valid_len to either pstr->len or
 | ||
|      pstr->bufs_len.  */
 | ||
|   end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
 | ||
|   for (byte_idx = pstr->valid_len; byte_idx < end_idx;)
 | ||
|     {
 | ||
|       wchar_t wc;
 | ||
|       const char *p;
 | ||
| 
 | ||
|       remain_len = end_idx - byte_idx;
 | ||
|       prev_st = pstr->cur_state;
 | ||
|       /* Apply the translation if we need.  */
 | ||
|       if (BE (pstr->trans != NULL, 0))
 | ||
| 	{
 | ||
| 	  int i, ch;
 | ||
| 
 | ||
| 	  for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i)
 | ||
| 	    {
 | ||
| 	      ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i];
 | ||
| 	      buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch];
 | ||
| 	    }
 | ||
| 	  p = (const char *) buf;
 | ||
| 	}
 | ||
|       else
 | ||
| 	p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx;
 | ||
|       mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state);
 | ||
|       if (BE (mbclen == (size_t) -2, 0))
 | ||
| 	{
 | ||
| 	  /* The buffer doesn't have enough space, finish to build.  */
 | ||
| 	  pstr->cur_state = prev_st;
 | ||
| 	  break;
 | ||
| 	}
 | ||
|       else if (BE (mbclen == (size_t) -1 || mbclen == 0, 0))
 | ||
| 	{
 | ||
| 	  /* We treat these cases as a singlebyte character.  */
 | ||
| 	  mbclen = 1;
 | ||
| 	  wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
 | ||
| 	  if (BE (pstr->trans != NULL, 0))
 | ||
| 	    wc = pstr->trans[wc];
 | ||
| 	  pstr->cur_state = prev_st;
 | ||
| 	}
 | ||
| 
 | ||
|       /* Write wide character and padding.  */
 | ||
|       pstr->wcs[byte_idx++] = wc;
 | ||
|       /* Write paddings.  */
 | ||
|       for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
 | ||
| 	pstr->wcs[byte_idx++] = WEOF;
 | ||
|     }
 | ||
|   pstr->valid_len = byte_idx;
 | ||
|   pstr->valid_raw_len = byte_idx;
 | ||
| }
 | ||
| 
 | ||
| /* Build wide character buffer PSTR->WCS like build_wcs_buffer,
 | ||
|    but for REG_ICASE.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| build_wcs_upper_buffer (re_string_t *pstr)
 | ||
| {
 | ||
|   mbstate_t prev_st;
 | ||
|   int src_idx, byte_idx, end_idx, remain_len;
 | ||
|   size_t mbclen;
 | ||
| #ifdef _LIBC
 | ||
|   char buf[MB_LEN_MAX];
 | ||
|   assert (MB_LEN_MAX >= pstr->mb_cur_max);
 | ||
| #else
 | ||
|   char buf[64];
 | ||
| #endif
 | ||
| 
 | ||
|   byte_idx = pstr->valid_len;
 | ||
|   end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
 | ||
| 
 | ||
|   /* The following optimization assumes that ASCII characters can be
 | ||
|      mapped to wide characters with a simple cast.  */
 | ||
|   if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed)
 | ||
|     {
 | ||
|       while (byte_idx < end_idx)
 | ||
| 	{
 | ||
| 	  wchar_t wc;
 | ||
| 
 | ||
| 	  if (isascii (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx])
 | ||
| 	      && mbsinit (&pstr->cur_state))
 | ||
| 	    {
 | ||
| 	      /* In case of a singlebyte character.  */
 | ||
| 	      pstr->mbs[byte_idx]
 | ||
| 		= toupper (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]);
 | ||
| 	      /* The next step uses the assumption that wchar_t is encoded
 | ||
| 		 ASCII-safe: all ASCII values can be converted like this.  */
 | ||
| 	      pstr->wcs[byte_idx] = (wchar_t) pstr->mbs[byte_idx];
 | ||
| 	      ++byte_idx;
 | ||
| 	      continue;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  remain_len = end_idx - byte_idx;
 | ||
| 	  prev_st = pstr->cur_state;
 | ||
| 	  mbclen = __mbrtowc (&wc,
 | ||
| 			      ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx
 | ||
| 			       + byte_idx), remain_len, &pstr->cur_state);
 | ||
| 	  if (BE (mbclen + 2 > 2, 1))
 | ||
| 	    {
 | ||
| 	      wchar_t wcu = wc;
 | ||
| 	      if (iswlower (wc))
 | ||
| 		{
 | ||
| 		  size_t mbcdlen;
 | ||
| 
 | ||
| 		  wcu = towupper (wc);
 | ||
| 		  mbcdlen = wcrtomb (buf, wcu, &prev_st);
 | ||
| 		  if (BE (mbclen == mbcdlen, 1))
 | ||
| 		    memcpy (pstr->mbs + byte_idx, buf, mbclen);
 | ||
| 		  else
 | ||
| 		    {
 | ||
| 		      src_idx = byte_idx;
 | ||
| 		      goto offsets_needed;
 | ||
| 		    }
 | ||
| 		}
 | ||
| 	      else
 | ||
| 		memcpy (pstr->mbs + byte_idx,
 | ||
| 			pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen);
 | ||
| 	      pstr->wcs[byte_idx++] = wcu;
 | ||
| 	      /* Write paddings.  */
 | ||
| 	      for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
 | ||
| 		pstr->wcs[byte_idx++] = WEOF;
 | ||
| 	    }
 | ||
| 	  else if (mbclen == (size_t) -1 || mbclen == 0)
 | ||
| 	    {
 | ||
| 	      /* It is an invalid character or '\0'.  Just use the byte.  */
 | ||
| 	      int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
 | ||
| 	      pstr->mbs[byte_idx] = ch;
 | ||
| 	      /* And also cast it to wide char.  */
 | ||
| 	      pstr->wcs[byte_idx++] = (wchar_t) ch;
 | ||
| 	      if (BE (mbclen == (size_t) -1, 0))
 | ||
| 		pstr->cur_state = prev_st;
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      /* The buffer doesn't have enough space, finish to build.  */
 | ||
| 	      pstr->cur_state = prev_st;
 | ||
| 	      break;
 | ||
| 	    }
 | ||
| 	}
 | ||
|       pstr->valid_len = byte_idx;
 | ||
|       pstr->valid_raw_len = byte_idx;
 | ||
|       return REG_NOERROR;
 | ||
|     }
 | ||
|   else
 | ||
|     for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;)
 | ||
|       {
 | ||
| 	wchar_t wc;
 | ||
| 	const char *p;
 | ||
|       offsets_needed:
 | ||
| 	remain_len = end_idx - byte_idx;
 | ||
| 	prev_st = pstr->cur_state;
 | ||
| 	if (BE (pstr->trans != NULL, 0))
 | ||
| 	  {
 | ||
| 	    int i, ch;
 | ||
| 
 | ||
| 	    for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i)
 | ||
| 	      {
 | ||
| 		ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i];
 | ||
| 		buf[i] = pstr->trans[ch];
 | ||
| 	      }
 | ||
| 	    p = (const char *) buf;
 | ||
| 	  }
 | ||
| 	else
 | ||
| 	  p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx;
 | ||
| 	mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state);
 | ||
| 	if (BE (mbclen + 2 > 2, 1))
 | ||
| 	  {
 | ||
| 	    wchar_t wcu = wc;
 | ||
| 	    if (iswlower (wc))
 | ||
| 	      {
 | ||
| 		size_t mbcdlen;
 | ||
| 
 | ||
| 		wcu = towupper (wc);
 | ||
| 		mbcdlen = wcrtomb ((char *) buf, wcu, &prev_st);
 | ||
| 		if (BE (mbclen == mbcdlen, 1))
 | ||
| 		  memcpy (pstr->mbs + byte_idx, buf, mbclen);
 | ||
| 		else if (mbcdlen != (size_t) -1)
 | ||
| 		  {
 | ||
| 		    size_t i;
 | ||
| 
 | ||
| 		    if (byte_idx + mbcdlen > pstr->bufs_len)
 | ||
| 		      {
 | ||
| 			pstr->cur_state = prev_st;
 | ||
| 			break;
 | ||
| 		      }
 | ||
| 
 | ||
| 		    if (pstr->offsets == NULL)
 | ||
| 		      {
 | ||
| 			pstr->offsets = re_malloc (int, pstr->bufs_len);
 | ||
| 
 | ||
| 			if (pstr->offsets == NULL)
 | ||
| 			  return REG_ESPACE;
 | ||
| 		      }
 | ||
| 		    if (!pstr->offsets_needed)
 | ||
| 		      {
 | ||
| 			for (i = 0; i < (size_t) byte_idx; ++i)
 | ||
| 			  pstr->offsets[i] = i;
 | ||
| 			pstr->offsets_needed = 1;
 | ||
| 		      }
 | ||
| 
 | ||
| 		    memcpy (pstr->mbs + byte_idx, buf, mbcdlen);
 | ||
| 		    pstr->wcs[byte_idx] = wcu;
 | ||
| 		    pstr->offsets[byte_idx] = src_idx;
 | ||
| 		    for (i = 1; i < mbcdlen; ++i)
 | ||
| 		      {
 | ||
| 			pstr->offsets[byte_idx + i]
 | ||
| 			  = src_idx + (i < mbclen ? i : mbclen - 1);
 | ||
| 			pstr->wcs[byte_idx + i] = WEOF;
 | ||
| 		      }
 | ||
| 		    pstr->len += mbcdlen - mbclen;
 | ||
| 		    if (pstr->raw_stop > src_idx)
 | ||
| 		      pstr->stop += mbcdlen - mbclen;
 | ||
| 		    end_idx = (pstr->bufs_len > pstr->len)
 | ||
| 			      ? pstr->len : pstr->bufs_len;
 | ||
| 		    byte_idx += mbcdlen;
 | ||
| 		    src_idx += mbclen;
 | ||
| 		    continue;
 | ||
| 		  }
 | ||
| 		else
 | ||
| 		  memcpy (pstr->mbs + byte_idx, p, mbclen);
 | ||
| 	      }
 | ||
| 	    else
 | ||
| 	      memcpy (pstr->mbs + byte_idx, p, mbclen);
 | ||
| 
 | ||
| 	    if (BE (pstr->offsets_needed != 0, 0))
 | ||
| 	      {
 | ||
| 		size_t i;
 | ||
| 		for (i = 0; i < mbclen; ++i)
 | ||
| 		  pstr->offsets[byte_idx + i] = src_idx + i;
 | ||
| 	      }
 | ||
| 	    src_idx += mbclen;
 | ||
| 
 | ||
| 	    pstr->wcs[byte_idx++] = wcu;
 | ||
| 	    /* Write paddings.  */
 | ||
| 	    for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
 | ||
| 	      pstr->wcs[byte_idx++] = WEOF;
 | ||
| 	  }
 | ||
| 	else if (mbclen == (size_t) -1 || mbclen == 0)
 | ||
| 	  {
 | ||
| 	    /* It is an invalid character or '\0'.  Just use the byte.  */
 | ||
| 	    int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx];
 | ||
| 
 | ||
| 	    if (BE (pstr->trans != NULL, 0))
 | ||
| 	      ch = pstr->trans [ch];
 | ||
| 	    pstr->mbs[byte_idx] = ch;
 | ||
| 
 | ||
| 	    if (BE (pstr->offsets_needed != 0, 0))
 | ||
| 	      pstr->offsets[byte_idx] = src_idx;
 | ||
| 	    ++src_idx;
 | ||
| 
 | ||
| 	    /* And also cast it to wide char.  */
 | ||
| 	    pstr->wcs[byte_idx++] = (wchar_t) ch;
 | ||
| 	    if (BE (mbclen == (size_t) -1, 0))
 | ||
| 	      pstr->cur_state = prev_st;
 | ||
| 	  }
 | ||
| 	else
 | ||
| 	  {
 | ||
| 	    /* The buffer doesn't have enough space, finish to build.  */
 | ||
| 	    pstr->cur_state = prev_st;
 | ||
| 	    break;
 | ||
| 	  }
 | ||
|       }
 | ||
|   pstr->valid_len = byte_idx;
 | ||
|   pstr->valid_raw_len = src_idx;
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Skip characters until the index becomes greater than NEW_RAW_IDX.
 | ||
|    Return the index.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| re_string_skip_chars (re_string_t *pstr, int new_raw_idx, wint_t *last_wc)
 | ||
| {
 | ||
|   mbstate_t prev_st;
 | ||
|   int rawbuf_idx;
 | ||
|   size_t mbclen;
 | ||
|   wint_t wc = WEOF;
 | ||
| 
 | ||
|   /* Skip the characters which are not necessary to check.  */
 | ||
|   for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len;
 | ||
|        rawbuf_idx < new_raw_idx;)
 | ||
|     {
 | ||
|       wchar_t wc2;
 | ||
|       int remain_len = pstr->len - rawbuf_idx;
 | ||
|       prev_st = pstr->cur_state;
 | ||
|       mbclen = __mbrtowc (&wc2, (const char *) pstr->raw_mbs + rawbuf_idx,
 | ||
| 			  remain_len, &pstr->cur_state);
 | ||
|       if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0))
 | ||
| 	{
 | ||
| 	  /* We treat these cases as a single byte character.  */
 | ||
| 	  if (mbclen == 0 || remain_len == 0)
 | ||
| 	    wc = L'\0';
 | ||
| 	  else
 | ||
| 	    wc = *(unsigned char *) (pstr->raw_mbs + rawbuf_idx);
 | ||
| 	  mbclen = 1;
 | ||
| 	  pstr->cur_state = prev_st;
 | ||
| 	}
 | ||
|       else
 | ||
| 	wc = (wint_t) wc2;
 | ||
|       /* Then proceed the next character.  */
 | ||
|       rawbuf_idx += mbclen;
 | ||
|     }
 | ||
|   *last_wc = (wint_t) wc;
 | ||
|   return rawbuf_idx;
 | ||
| }
 | ||
| #endif /* RE_ENABLE_I18N  */
 | ||
| 
 | ||
| /* Build the buffer PSTR->MBS, and apply the translation if we need.
 | ||
|    This function is used in case of REG_ICASE.  */
 | ||
| 
 | ||
| static void
 | ||
| internal_function
 | ||
| build_upper_buffer (re_string_t *pstr)
 | ||
| {
 | ||
|   int char_idx, end_idx;
 | ||
|   end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
 | ||
| 
 | ||
|   for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx)
 | ||
|     {
 | ||
|       int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx];
 | ||
|       if (BE (pstr->trans != NULL, 0))
 | ||
| 	ch = pstr->trans[ch];
 | ||
|       if (islower (ch))
 | ||
| 	pstr->mbs[char_idx] = toupper (ch);
 | ||
|       else
 | ||
| 	pstr->mbs[char_idx] = ch;
 | ||
|     }
 | ||
|   pstr->valid_len = char_idx;
 | ||
|   pstr->valid_raw_len = char_idx;
 | ||
| }
 | ||
| 
 | ||
| /* Apply TRANS to the buffer in PSTR.  */
 | ||
| 
 | ||
| static void
 | ||
| internal_function
 | ||
| re_string_translate_buffer (re_string_t *pstr)
 | ||
| {
 | ||
|   int buf_idx, end_idx;
 | ||
|   end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
 | ||
| 
 | ||
|   for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx)
 | ||
|     {
 | ||
|       int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx];
 | ||
|       pstr->mbs[buf_idx] = pstr->trans[ch];
 | ||
|     }
 | ||
| 
 | ||
|   pstr->valid_len = buf_idx;
 | ||
|   pstr->valid_raw_len = buf_idx;
 | ||
| }
 | ||
| 
 | ||
| /* This function re-construct the buffers.
 | ||
|    Concretely, convert to wide character in case of pstr->mb_cur_max > 1,
 | ||
|    convert to upper case in case of REG_ICASE, apply translation.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| re_string_reconstruct (re_string_t *pstr, int idx, int eflags)
 | ||
| {
 | ||
|   int offset = idx - pstr->raw_mbs_idx;
 | ||
|   if (BE (offset < 0, 0))
 | ||
|     {
 | ||
|       /* Reset buffer.  */
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       if (pstr->mb_cur_max > 1)
 | ||
| 	memset (&pstr->cur_state, '\0', sizeof (mbstate_t));
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
|       pstr->len = pstr->raw_len;
 | ||
|       pstr->stop = pstr->raw_stop;
 | ||
|       pstr->valid_len = 0;
 | ||
|       pstr->raw_mbs_idx = 0;
 | ||
|       pstr->valid_raw_len = 0;
 | ||
|       pstr->offsets_needed = 0;
 | ||
|       pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
 | ||
| 			   : CONTEXT_NEWLINE | CONTEXT_BEGBUF);
 | ||
|       if (!pstr->mbs_allocated)
 | ||
| 	pstr->mbs = (unsigned char *) pstr->raw_mbs;
 | ||
|       offset = idx;
 | ||
|     }
 | ||
| 
 | ||
|   if (BE (offset != 0, 1))
 | ||
|     {
 | ||
|       /* Should the already checked characters be kept?  */
 | ||
|       if (BE (offset < pstr->valid_raw_len, 1))
 | ||
| 	{
 | ||
| 	  /* Yes, move them to the front of the buffer.  */
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| 	  if (BE (pstr->offsets_needed, 0))
 | ||
| 	    {
 | ||
| 	      int low = 0, high = pstr->valid_len, mid;
 | ||
| 	      do
 | ||
| 		{
 | ||
| 		  mid = (high + low) / 2;
 | ||
| 		  if (pstr->offsets[mid] > offset)
 | ||
| 		    high = mid;
 | ||
| 		  else if (pstr->offsets[mid] < offset)
 | ||
| 		    low = mid + 1;
 | ||
| 		  else
 | ||
| 		    break;
 | ||
| 		}
 | ||
| 	      while (low < high);
 | ||
| 	      if (pstr->offsets[mid] < offset)
 | ||
| 		++mid;
 | ||
| 	      pstr->tip_context = re_string_context_at (pstr, mid - 1,
 | ||
| 							eflags);
 | ||
| 	      /* This can be quite complicated, so handle specially
 | ||
| 		 only the common and easy case where the character with
 | ||
| 		 different length representation of lower and upper
 | ||
| 		 case is present at or after offset.  */
 | ||
| 	      if (pstr->valid_len > offset
 | ||
| 		  && mid == offset && pstr->offsets[mid] == offset)
 | ||
| 		{
 | ||
| 		  memmove (pstr->wcs, pstr->wcs + offset,
 | ||
| 			   (pstr->valid_len - offset) * sizeof (wint_t));
 | ||
| 		  memmove (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset);
 | ||
| 		  pstr->valid_len -= offset;
 | ||
| 		  pstr->valid_raw_len -= offset;
 | ||
| 		  for (low = 0; low < pstr->valid_len; low++)
 | ||
| 		    pstr->offsets[low] = pstr->offsets[low + offset] - offset;
 | ||
| 		}
 | ||
| 	      else
 | ||
| 		{
 | ||
| 		  /* Otherwise, just find out how long the partial multibyte
 | ||
| 		     character at offset is and fill it with WEOF/255.  */
 | ||
| 		  pstr->len = pstr->raw_len - idx + offset;
 | ||
| 		  pstr->stop = pstr->raw_stop - idx + offset;
 | ||
| 		  pstr->offsets_needed = 0;
 | ||
| 		  while (mid > 0 && pstr->offsets[mid - 1] == offset)
 | ||
| 		    --mid;
 | ||
| 		  while (mid < pstr->valid_len)
 | ||
| 		    if (pstr->wcs[mid] != WEOF)
 | ||
| 		      break;
 | ||
| 		    else
 | ||
| 		      ++mid;
 | ||
| 		  if (mid == pstr->valid_len)
 | ||
| 		    pstr->valid_len = 0;
 | ||
| 		  else
 | ||
| 		    {
 | ||
| 		      pstr->valid_len = pstr->offsets[mid] - offset;
 | ||
| 		      if (pstr->valid_len)
 | ||
| 			{
 | ||
| 			  for (low = 0; low < pstr->valid_len; ++low)
 | ||
| 			    pstr->wcs[low] = WEOF;
 | ||
| 			  memset (pstr->mbs, 255, pstr->valid_len);
 | ||
| 			}
 | ||
| 		    }
 | ||
| 		  pstr->valid_raw_len = pstr->valid_len;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	  else
 | ||
| #endif
 | ||
| 	    {
 | ||
| 	      pstr->tip_context = re_string_context_at (pstr, offset - 1,
 | ||
| 							eflags);
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| 	      if (pstr->mb_cur_max > 1)
 | ||
| 		memmove (pstr->wcs, pstr->wcs + offset,
 | ||
| 			 (pstr->valid_len - offset) * sizeof (wint_t));
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 	      if (BE (pstr->mbs_allocated, 0))
 | ||
| 		memmove (pstr->mbs, pstr->mbs + offset,
 | ||
| 			 pstr->valid_len - offset);
 | ||
| 	      pstr->valid_len -= offset;
 | ||
| 	      pstr->valid_raw_len -= offset;
 | ||
| #if DEBUG
 | ||
| 	      assert (pstr->valid_len > 0);
 | ||
| #endif
 | ||
| 	    }
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| 	  /* No, skip all characters until IDX.  */
 | ||
| 	  int prev_valid_len = pstr->valid_len;
 | ||
| 
 | ||
| 	  if (BE (pstr->offsets_needed, 0))
 | ||
| 	    {
 | ||
| 	      pstr->len = pstr->raw_len - idx + offset;
 | ||
| 	      pstr->stop = pstr->raw_stop - idx + offset;
 | ||
| 	      pstr->offsets_needed = 0;
 | ||
| 	    }
 | ||
| #endif
 | ||
| 	  pstr->valid_len = 0;
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| 	  if (pstr->mb_cur_max > 1)
 | ||
| 	    {
 | ||
| 	      int wcs_idx;
 | ||
| 	      wint_t wc = WEOF;
 | ||
| 
 | ||
| 	      if (pstr->is_utf8)
 | ||
| 		{
 | ||
| 		  const unsigned char *raw, *p, *end;
 | ||
| 
 | ||
| 		  /* Special case UTF-8.  Multi-byte chars start with any
 | ||
| 		     byte other than 0x80 - 0xbf.  */
 | ||
| 		  raw = pstr->raw_mbs + pstr->raw_mbs_idx;
 | ||
| 		  end = raw + (offset - pstr->mb_cur_max);
 | ||
| 		  if (end < pstr->raw_mbs)
 | ||
| 		    end = pstr->raw_mbs;
 | ||
| 		  p = raw + offset - 1;
 | ||
| #ifdef _LIBC
 | ||
| 		  /* We know the wchar_t encoding is UCS4, so for the simple
 | ||
| 		     case, ASCII characters, skip the conversion step.  */
 | ||
| 		  if (isascii (*p) && BE (pstr->trans == NULL, 1))
 | ||
| 		    {
 | ||
| 		      memset (&pstr->cur_state, '\0', sizeof (mbstate_t));
 | ||
| 		      /* pstr->valid_len = 0; */
 | ||
| 		      wc = (wchar_t) *p;
 | ||
| 		    }
 | ||
| 		  else
 | ||
| #endif
 | ||
| 		    for (; p >= end; --p)
 | ||
| 		      if ((*p & 0xc0) != 0x80)
 | ||
| 			{
 | ||
| 			  mbstate_t cur_state;
 | ||
| 			  wchar_t wc2;
 | ||
| 			  int mlen = raw + pstr->len - p;
 | ||
| 			  unsigned char buf[6];
 | ||
| 			  size_t mbclen;
 | ||
| 
 | ||
| 			  if (BE (pstr->trans != NULL, 0))
 | ||
| 			    {
 | ||
| 			      int i = mlen < 6 ? mlen : 6;
 | ||
| 			      while (--i >= 0)
 | ||
| 				buf[i] = pstr->trans[p[i]];
 | ||
| 			    }
 | ||
| 			  /* XXX Don't use mbrtowc, we know which conversion
 | ||
| 			     to use (UTF-8 -> UCS4).  */
 | ||
| 			  memset (&cur_state, 0, sizeof (cur_state));
 | ||
| 			  mbclen = __mbrtowc (&wc2, (const char *) p, mlen,
 | ||
| 					      &cur_state);
 | ||
| 			  if (raw + offset - p <= mbclen
 | ||
| 			      && mbclen < (size_t) -2)
 | ||
| 			    {
 | ||
| 			      memset (&pstr->cur_state, '\0',
 | ||
| 				      sizeof (mbstate_t));
 | ||
| 			      pstr->valid_len = mbclen - (raw + offset - p);
 | ||
| 			      wc = wc2;
 | ||
| 			    }
 | ||
| 			  break;
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 	      if (wc == WEOF)
 | ||
| 		pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx;
 | ||
| 	      if (wc == WEOF)
 | ||
| 		pstr->tip_context
 | ||
| 		  = re_string_context_at (pstr, prev_valid_len - 1, eflags);
 | ||
| 	      else
 | ||
| 		pstr->tip_context = ((BE (pstr->word_ops_used != 0, 0)
 | ||
| 				      && IS_WIDE_WORD_CHAR (wc))
 | ||
| 				     ? CONTEXT_WORD
 | ||
| 				     : ((IS_WIDE_NEWLINE (wc)
 | ||
| 					 && pstr->newline_anchor)
 | ||
| 					? CONTEXT_NEWLINE : 0));
 | ||
| 	      if (BE (pstr->valid_len, 0))
 | ||
| 		{
 | ||
| 		  for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx)
 | ||
| 		    pstr->wcs[wcs_idx] = WEOF;
 | ||
| 		  if (pstr->mbs_allocated)
 | ||
| 		    memset (pstr->mbs, 255, pstr->valid_len);
 | ||
| 		}
 | ||
| 	      pstr->valid_raw_len = pstr->valid_len;
 | ||
| 	    }
 | ||
| 	  else
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 	    {
 | ||
| 	      int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1];
 | ||
| 	      pstr->valid_raw_len = 0;
 | ||
| 	      if (pstr->trans)
 | ||
| 		c = pstr->trans[c];
 | ||
| 	      pstr->tip_context = (bitset_contain (pstr->word_char, c)
 | ||
| 				   ? CONTEXT_WORD
 | ||
| 				   : ((IS_NEWLINE (c) && pstr->newline_anchor)
 | ||
| 				      ? CONTEXT_NEWLINE : 0));
 | ||
| 	    }
 | ||
| 	}
 | ||
|       if (!BE (pstr->mbs_allocated, 0))
 | ||
| 	pstr->mbs += offset;
 | ||
|     }
 | ||
|   pstr->raw_mbs_idx = idx;
 | ||
|   pstr->len -= offset;
 | ||
|   pstr->stop -= offset;
 | ||
| 
 | ||
|   /* Then build the buffers.  */
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   if (pstr->mb_cur_max > 1)
 | ||
|     {
 | ||
|       if (pstr->icase)
 | ||
| 	{
 | ||
| 	  reg_errcode_t ret = build_wcs_upper_buffer (pstr);
 | ||
| 	  if (BE (ret != REG_NOERROR, 0))
 | ||
| 	    return ret;
 | ||
| 	}
 | ||
|       else
 | ||
| 	build_wcs_buffer (pstr);
 | ||
|     }
 | ||
|   else
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
|     if (BE (pstr->mbs_allocated, 0))
 | ||
|       {
 | ||
| 	if (pstr->icase)
 | ||
| 	  build_upper_buffer (pstr);
 | ||
| 	else if (pstr->trans != NULL)
 | ||
| 	  re_string_translate_buffer (pstr);
 | ||
|       }
 | ||
|     else
 | ||
|       pstr->valid_len = pstr->len;
 | ||
| 
 | ||
|   pstr->cur_idx = 0;
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| static unsigned char
 | ||
| internal_function __attribute ((pure))
 | ||
| re_string_peek_byte_case (const re_string_t *pstr, int idx)
 | ||
| {
 | ||
|   int ch, off;
 | ||
| 
 | ||
|   /* Handle the common (easiest) cases first.  */
 | ||
|   if (BE (!pstr->mbs_allocated, 1))
 | ||
|     return re_string_peek_byte (pstr, idx);
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   if (pstr->mb_cur_max > 1
 | ||
|       && ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx))
 | ||
|     return re_string_peek_byte (pstr, idx);
 | ||
| #endif
 | ||
| 
 | ||
|   off = pstr->cur_idx + idx;
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   if (pstr->offsets_needed)
 | ||
|     off = pstr->offsets[off];
 | ||
| #endif
 | ||
| 
 | ||
|   ch = pstr->raw_mbs[pstr->raw_mbs_idx + off];
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   /* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I
 | ||
|      this function returns CAPITAL LETTER I instead of first byte of
 | ||
|      DOTLESS SMALL LETTER I.  The latter would confuse the parser,
 | ||
|      since peek_byte_case doesn't advance cur_idx in any way.  */
 | ||
|   if (pstr->offsets_needed && !isascii (ch))
 | ||
|     return re_string_peek_byte (pstr, idx);
 | ||
| #endif
 | ||
| 
 | ||
|   return ch;
 | ||
| }
 | ||
| 
 | ||
| static unsigned char
 | ||
| internal_function __attribute ((pure))
 | ||
| re_string_fetch_byte_case (re_string_t *pstr)
 | ||
| {
 | ||
|   if (BE (!pstr->mbs_allocated, 1))
 | ||
|     return re_string_fetch_byte (pstr);
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   if (pstr->offsets_needed)
 | ||
|     {
 | ||
|       int off, ch;
 | ||
| 
 | ||
|       /* For tr_TR.UTF-8 [[:islower:]] there is
 | ||
| 	 [[: CAPITAL LETTER I WITH DOT lower:]] in mbs.  Skip
 | ||
| 	 in that case the whole multi-byte character and return
 | ||
| 	 the original letter.  On the other side, with
 | ||
| 	 [[: DOTLESS SMALL LETTER I return [[:I, as doing
 | ||
| 	 anything else would complicate things too much.  */
 | ||
| 
 | ||
|       if (!re_string_first_byte (pstr, pstr->cur_idx))
 | ||
| 	return re_string_fetch_byte (pstr);
 | ||
| 
 | ||
|       off = pstr->offsets[pstr->cur_idx];
 | ||
|       ch = pstr->raw_mbs[pstr->raw_mbs_idx + off];
 | ||
| 
 | ||
|       if (! isascii (ch))
 | ||
| 	return re_string_fetch_byte (pstr);
 | ||
| 
 | ||
|       re_string_skip_bytes (pstr,
 | ||
| 			    re_string_char_size_at (pstr, pstr->cur_idx));
 | ||
|       return ch;
 | ||
|     }
 | ||
| #endif
 | ||
| 
 | ||
|   return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++];
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| internal_function
 | ||
| re_string_destruct (re_string_t *pstr)
 | ||
| {
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   re_free (pstr->wcs);
 | ||
|   re_free (pstr->offsets);
 | ||
| #endif /* RE_ENABLE_I18N  */
 | ||
|   if (pstr->mbs_allocated)
 | ||
|     re_free (pstr->mbs);
 | ||
| }
 | ||
| 
 | ||
| /* Return the context at IDX in INPUT.  */
 | ||
| 
 | ||
| static unsigned int
 | ||
| internal_function
 | ||
| re_string_context_at (const re_string_t *input, int idx, int eflags)
 | ||
| {
 | ||
|   int c;
 | ||
|   if (BE (idx < 0, 0))
 | ||
|     /* In this case, we use the value stored in input->tip_context,
 | ||
|        since we can't know the character in input->mbs[-1] here.  */
 | ||
|     return input->tip_context;
 | ||
|   if (BE (idx == input->len, 0))
 | ||
|     return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF
 | ||
| 	    : CONTEXT_NEWLINE | CONTEXT_ENDBUF);
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   if (input->mb_cur_max > 1)
 | ||
|     {
 | ||
|       wint_t wc;
 | ||
|       int wc_idx = idx;
 | ||
|       while(input->wcs[wc_idx] == WEOF)
 | ||
| 	{
 | ||
| #ifdef DEBUG
 | ||
| 	  /* It must not happen.  */
 | ||
| 	  assert (wc_idx >= 0);
 | ||
| #endif
 | ||
| 	  --wc_idx;
 | ||
| 	  if (wc_idx < 0)
 | ||
| 	    return input->tip_context;
 | ||
| 	}
 | ||
|       wc = input->wcs[wc_idx];
 | ||
|       if (BE (input->word_ops_used != 0, 0) && IS_WIDE_WORD_CHAR (wc))
 | ||
| 	return CONTEXT_WORD;
 | ||
|       return (IS_WIDE_NEWLINE (wc) && input->newline_anchor
 | ||
| 	      ? CONTEXT_NEWLINE : 0);
 | ||
|     }
 | ||
|   else
 | ||
| #endif
 | ||
|     {
 | ||
|       c = re_string_byte_at (input, idx);
 | ||
|       if (bitset_contain (input->word_char, c))
 | ||
| 	return CONTEXT_WORD;
 | ||
|       return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Functions for set operation.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| re_node_set_alloc (re_node_set *set, int size)
 | ||
| {
 | ||
|   /*
 | ||
|    * ADR: valgrind says size can be 0, which then doesn't
 | ||
|    * free the block of size 0.  Harumph. This seems
 | ||
|    * to work ok, though.
 | ||
|    */
 | ||
|   if (size == 0)
 | ||
|     {
 | ||
|        memset(set, 0, sizeof(*set));
 | ||
|        return REG_NOERROR;
 | ||
|     }
 | ||
|   set->alloc = size;
 | ||
|   set->nelem = 0;
 | ||
|   set->elems = re_malloc (int, size);
 | ||
|   if (BE (set->elems == NULL, 0))
 | ||
|     return REG_ESPACE;
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| re_node_set_init_1 (re_node_set *set, int elem)
 | ||
| {
 | ||
|   set->alloc = 1;
 | ||
|   set->nelem = 1;
 | ||
|   set->elems = re_malloc (int, 1);
 | ||
|   if (BE (set->elems == NULL, 0))
 | ||
|     {
 | ||
|       set->alloc = set->nelem = 0;
 | ||
|       return REG_ESPACE;
 | ||
|     }
 | ||
|   set->elems[0] = elem;
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| re_node_set_init_2 (re_node_set *set, int elem1, int elem2)
 | ||
| {
 | ||
|   set->alloc = 2;
 | ||
|   set->elems = re_malloc (int, 2);
 | ||
|   if (BE (set->elems == NULL, 0))
 | ||
|     return REG_ESPACE;
 | ||
|   if (elem1 == elem2)
 | ||
|     {
 | ||
|       set->nelem = 1;
 | ||
|       set->elems[0] = elem1;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       set->nelem = 2;
 | ||
|       if (elem1 < elem2)
 | ||
| 	{
 | ||
| 	  set->elems[0] = elem1;
 | ||
| 	  set->elems[1] = elem2;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  set->elems[0] = elem2;
 | ||
| 	  set->elems[1] = elem1;
 | ||
| 	}
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| re_node_set_init_copy (re_node_set *dest, const re_node_set *src)
 | ||
| {
 | ||
|   dest->nelem = src->nelem;
 | ||
|   if (src->nelem > 0)
 | ||
|     {
 | ||
|       dest->alloc = dest->nelem;
 | ||
|       dest->elems = re_malloc (int, dest->alloc);
 | ||
|       if (BE (dest->elems == NULL, 0))
 | ||
| 	{
 | ||
| 	  dest->alloc = dest->nelem = 0;
 | ||
| 	  return REG_ESPACE;
 | ||
| 	}
 | ||
|       memcpy (dest->elems, src->elems, src->nelem * sizeof (int));
 | ||
|     }
 | ||
|   else
 | ||
|     re_node_set_init_empty (dest);
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Calculate the intersection of the sets SRC1 and SRC2. And merge it to
 | ||
|    DEST. Return value indicate the error code or REG_NOERROR if succeeded.
 | ||
|    Note: We assume dest->elems is NULL, when dest->alloc is 0.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1,
 | ||
| 			   const re_node_set *src2)
 | ||
| {
 | ||
|   int i1, i2, is, id, delta, sbase;
 | ||
|   if (src1->nelem == 0 || src2->nelem == 0)
 | ||
|     return REG_NOERROR;
 | ||
| 
 | ||
|   /* We need dest->nelem + 2 * elems_in_intersection; this is a
 | ||
|      conservative estimate.  */
 | ||
|   if (src1->nelem + src2->nelem + dest->nelem > dest->alloc)
 | ||
|     {
 | ||
|       int new_alloc = src1->nelem + src2->nelem + dest->alloc;
 | ||
|       int *new_elems = re_realloc (dest->elems, int, new_alloc);
 | ||
|       if (BE (new_elems == NULL, 0))
 | ||
| 	return REG_ESPACE;
 | ||
|       dest->elems = new_elems;
 | ||
|       dest->alloc = new_alloc;
 | ||
|     }
 | ||
| 
 | ||
|   /* Find the items in the intersection of SRC1 and SRC2, and copy
 | ||
|      into the top of DEST those that are not already in DEST itself.  */
 | ||
|   sbase = dest->nelem + src1->nelem + src2->nelem;
 | ||
|   i1 = src1->nelem - 1;
 | ||
|   i2 = src2->nelem - 1;
 | ||
|   id = dest->nelem - 1;
 | ||
|   for (;;)
 | ||
|     {
 | ||
|       if (src1->elems[i1] == src2->elems[i2])
 | ||
| 	{
 | ||
| 	  /* Try to find the item in DEST.  Maybe we could binary search?  */
 | ||
| 	  while (id >= 0 && dest->elems[id] > src1->elems[i1])
 | ||
| 	    --id;
 | ||
| 
 | ||
| 	  if (id < 0 || dest->elems[id] != src1->elems[i1])
 | ||
| 	    dest->elems[--sbase] = src1->elems[i1];
 | ||
| 
 | ||
| 	  if (--i1 < 0 || --i2 < 0)
 | ||
| 	    break;
 | ||
| 	}
 | ||
| 
 | ||
|       /* Lower the highest of the two items.  */
 | ||
|       else if (src1->elems[i1] < src2->elems[i2])
 | ||
| 	{
 | ||
| 	  if (--i2 < 0)
 | ||
| 	    break;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  if (--i1 < 0)
 | ||
| 	    break;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   id = dest->nelem - 1;
 | ||
|   is = dest->nelem + src1->nelem + src2->nelem - 1;
 | ||
|   delta = is - sbase + 1;
 | ||
| 
 | ||
|   /* Now copy.  When DELTA becomes zero, the remaining
 | ||
|      DEST elements are already in place; this is more or
 | ||
|      less the same loop that is in re_node_set_merge.  */
 | ||
|   dest->nelem += delta;
 | ||
|   if (delta > 0 && id >= 0)
 | ||
|     for (;;)
 | ||
|       {
 | ||
| 	if (dest->elems[is] > dest->elems[id])
 | ||
| 	  {
 | ||
| 	    /* Copy from the top.  */
 | ||
| 	    dest->elems[id + delta--] = dest->elems[is--];
 | ||
| 	    if (delta == 0)
 | ||
| 	      break;
 | ||
| 	  }
 | ||
| 	else
 | ||
| 	  {
 | ||
| 	    /* Slide from the bottom.  */
 | ||
| 	    dest->elems[id + delta] = dest->elems[id];
 | ||
| 	    if (--id < 0)
 | ||
| 	      break;
 | ||
| 	  }
 | ||
|       }
 | ||
| 
 | ||
|   /* Copy remaining SRC elements.  */
 | ||
|   memcpy (dest->elems, dest->elems + sbase, delta * sizeof (int));
 | ||
| 
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Calculate the union set of the sets SRC1 and SRC2. And store it to
 | ||
|    DEST. Return value indicate the error code or REG_NOERROR if succeeded.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| re_node_set_init_union (re_node_set *dest, const re_node_set *src1,
 | ||
| 			const re_node_set *src2)
 | ||
| {
 | ||
|   int i1, i2, id;
 | ||
|   if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0)
 | ||
|     {
 | ||
|       dest->alloc = src1->nelem + src2->nelem;
 | ||
|       dest->elems = re_malloc (int, dest->alloc);
 | ||
|       if (BE (dest->elems == NULL, 0))
 | ||
| 	return REG_ESPACE;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       if (src1 != NULL && src1->nelem > 0)
 | ||
| 	return re_node_set_init_copy (dest, src1);
 | ||
|       else if (src2 != NULL && src2->nelem > 0)
 | ||
| 	return re_node_set_init_copy (dest, src2);
 | ||
|       else
 | ||
| 	re_node_set_init_empty (dest);
 | ||
|       return REG_NOERROR;
 | ||
|     }
 | ||
|   for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;)
 | ||
|     {
 | ||
|       if (src1->elems[i1] > src2->elems[i2])
 | ||
| 	{
 | ||
| 	  dest->elems[id++] = src2->elems[i2++];
 | ||
| 	  continue;
 | ||
| 	}
 | ||
|       if (src1->elems[i1] == src2->elems[i2])
 | ||
| 	++i2;
 | ||
|       dest->elems[id++] = src1->elems[i1++];
 | ||
|     }
 | ||
|   if (i1 < src1->nelem)
 | ||
|     {
 | ||
|       memcpy (dest->elems + id, src1->elems + i1,
 | ||
| 	     (src1->nelem - i1) * sizeof (int));
 | ||
|       id += src1->nelem - i1;
 | ||
|     }
 | ||
|   else if (i2 < src2->nelem)
 | ||
|     {
 | ||
|       memcpy (dest->elems + id, src2->elems + i2,
 | ||
| 	     (src2->nelem - i2) * sizeof (int));
 | ||
|       id += src2->nelem - i2;
 | ||
|     }
 | ||
|   dest->nelem = id;
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Calculate the union set of the sets DEST and SRC. And store it to
 | ||
|    DEST. Return value indicate the error code or REG_NOERROR if succeeded.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| re_node_set_merge (re_node_set *dest, const re_node_set *src)
 | ||
| {
 | ||
|   int is, id, sbase, delta;
 | ||
|   if (src == NULL || src->nelem == 0)
 | ||
|     return REG_NOERROR;
 | ||
|   if (dest->alloc < 2 * src->nelem + dest->nelem)
 | ||
|     {
 | ||
|       int new_alloc = 2 * (src->nelem + dest->alloc);
 | ||
|       int *new_buffer = re_realloc (dest->elems, int, new_alloc);
 | ||
|       if (BE (new_buffer == NULL, 0))
 | ||
| 	return REG_ESPACE;
 | ||
|       dest->elems = new_buffer;
 | ||
|       dest->alloc = new_alloc;
 | ||
|     }
 | ||
| 
 | ||
|   if (BE (dest->nelem == 0, 0))
 | ||
|     {
 | ||
|       dest->nelem = src->nelem;
 | ||
|       memcpy (dest->elems, src->elems, src->nelem * sizeof (int));
 | ||
|       return REG_NOERROR;
 | ||
|     }
 | ||
| 
 | ||
|   /* Copy into the top of DEST the items of SRC that are not
 | ||
|      found in DEST.  Maybe we could binary search in DEST?  */
 | ||
|   for (sbase = dest->nelem + 2 * src->nelem,
 | ||
|        is = src->nelem - 1, id = dest->nelem - 1; is >= 0 && id >= 0; )
 | ||
|     {
 | ||
|       if (dest->elems[id] == src->elems[is])
 | ||
| 	is--, id--;
 | ||
|       else if (dest->elems[id] < src->elems[is])
 | ||
| 	dest->elems[--sbase] = src->elems[is--];
 | ||
|       else /* if (dest->elems[id] > src->elems[is]) */
 | ||
| 	--id;
 | ||
|     }
 | ||
| 
 | ||
|   if (is >= 0)
 | ||
|     {
 | ||
|       /* If DEST is exhausted, the remaining items of SRC must be unique.  */
 | ||
|       sbase -= is + 1;
 | ||
|       memcpy (dest->elems + sbase, src->elems, (is + 1) * sizeof (int));
 | ||
|     }
 | ||
| 
 | ||
|   id = dest->nelem - 1;
 | ||
|   is = dest->nelem + 2 * src->nelem - 1;
 | ||
|   delta = is - sbase + 1;
 | ||
|   if (delta == 0)
 | ||
|     return REG_NOERROR;
 | ||
| 
 | ||
|   /* Now copy.  When DELTA becomes zero, the remaining
 | ||
|      DEST elements are already in place.  */
 | ||
|   dest->nelem += delta;
 | ||
|   for (;;)
 | ||
|     {
 | ||
|       if (dest->elems[is] > dest->elems[id])
 | ||
| 	{
 | ||
| 	  /* Copy from the top.  */
 | ||
| 	  dest->elems[id + delta--] = dest->elems[is--];
 | ||
| 	  if (delta == 0)
 | ||
| 	    break;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  /* Slide from the bottom.  */
 | ||
| 	  dest->elems[id + delta] = dest->elems[id];
 | ||
| 	  if (--id < 0)
 | ||
| 	    {
 | ||
| 	      /* Copy remaining SRC elements.  */
 | ||
| 	      memcpy (dest->elems, dest->elems + sbase,
 | ||
| 		      delta * sizeof (int));
 | ||
| 	      break;
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Insert the new element ELEM to the re_node_set* SET.
 | ||
|    SET should not already have ELEM.
 | ||
|    return -1 if an error has occurred, return 1 otherwise.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| re_node_set_insert (re_node_set *set, int elem)
 | ||
| {
 | ||
|   int idx;
 | ||
|   /* In case the set is empty.  */
 | ||
|   if (set->alloc == 0)
 | ||
|     {
 | ||
|       if (BE (re_node_set_init_1 (set, elem) == REG_NOERROR, 1))
 | ||
| 	return 1;
 | ||
|       else
 | ||
| 	return -1;
 | ||
|     }
 | ||
| 
 | ||
|   if (BE (set->nelem, 0) == 0)
 | ||
|     {
 | ||
|       /* We already guaranteed above that set->alloc != 0.  */
 | ||
|       set->elems[0] = elem;
 | ||
|       ++set->nelem;
 | ||
|       return 1;
 | ||
|     }
 | ||
| 
 | ||
|   /* Realloc if we need.  */
 | ||
|   if (set->alloc == set->nelem)
 | ||
|     {
 | ||
|       int *new_elems;
 | ||
|       set->alloc = set->alloc * 2;
 | ||
|       new_elems = re_realloc (set->elems, int, set->alloc);
 | ||
|       if (BE (new_elems == NULL, 0))
 | ||
| 	return -1;
 | ||
|       set->elems = new_elems;
 | ||
|     }
 | ||
| 
 | ||
|   /* Move the elements which follows the new element.  Test the
 | ||
|      first element separately to skip a check in the inner loop.  */
 | ||
|   if (elem < set->elems[0])
 | ||
|     {
 | ||
|       idx = 0;
 | ||
|       for (idx = set->nelem; idx > 0; idx--)
 | ||
| 	set->elems[idx] = set->elems[idx - 1];
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       for (idx = set->nelem; set->elems[idx - 1] > elem; idx--)
 | ||
| 	set->elems[idx] = set->elems[idx - 1];
 | ||
|     }
 | ||
| 
 | ||
|   /* Insert the new element.  */
 | ||
|   set->elems[idx] = elem;
 | ||
|   ++set->nelem;
 | ||
|   return 1;
 | ||
| }
 | ||
| 
 | ||
| /* Insert the new element ELEM to the re_node_set* SET.
 | ||
|    SET should not already have any element greater than or equal to ELEM.
 | ||
|    Return -1 if an error has occurred, return 1 otherwise.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| re_node_set_insert_last (re_node_set *set, int elem)
 | ||
| {
 | ||
|   /* Realloc if we need.  */
 | ||
|   if (set->alloc == set->nelem)
 | ||
|     {
 | ||
|       int *new_elems;
 | ||
|       set->alloc = (set->alloc + 1) * 2;
 | ||
|       new_elems = re_realloc (set->elems, int, set->alloc);
 | ||
|       if (BE (new_elems == NULL, 0))
 | ||
| 	return -1;
 | ||
|       set->elems = new_elems;
 | ||
|     }
 | ||
| 
 | ||
|   /* Insert the new element.  */
 | ||
|   set->elems[set->nelem++] = elem;
 | ||
|   return 1;
 | ||
| }
 | ||
| 
 | ||
| /* Compare two node sets SET1 and SET2.
 | ||
|    return 1 if SET1 and SET2 are equivalent, return 0 otherwise.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function __attribute ((pure))
 | ||
| re_node_set_compare (const re_node_set *set1, const re_node_set *set2)
 | ||
| {
 | ||
|   int i;
 | ||
|   if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem)
 | ||
|     return 0;
 | ||
|   for (i = set1->nelem ; --i >= 0 ; )
 | ||
|     if (set1->elems[i] != set2->elems[i])
 | ||
|       return 0;
 | ||
|   return 1;
 | ||
| }
 | ||
| 
 | ||
| /* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function __attribute ((pure))
 | ||
| re_node_set_contains (const re_node_set *set, int elem)
 | ||
| {
 | ||
|   unsigned int idx, right, mid;
 | ||
|   if (set->nelem <= 0)
 | ||
|     return 0;
 | ||
| 
 | ||
|   /* Binary search the element.  */
 | ||
|   idx = 0;
 | ||
|   right = set->nelem - 1;
 | ||
|   while (idx < right)
 | ||
|     {
 | ||
|       mid = (idx + right) / 2;
 | ||
|       if (set->elems[mid] < elem)
 | ||
| 	idx = mid + 1;
 | ||
|       else
 | ||
| 	right = mid;
 | ||
|     }
 | ||
|   return set->elems[idx] == elem ? idx + 1 : 0;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| internal_function
 | ||
| re_node_set_remove_at (re_node_set *set, int idx)
 | ||
| {
 | ||
|   if (idx < 0 || idx >= set->nelem)
 | ||
|     return;
 | ||
|   --set->nelem;
 | ||
|   for (; idx < set->nelem; idx++)
 | ||
|     set->elems[idx] = set->elems[idx + 1];
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Add the token TOKEN to dfa->nodes, and return the index of the token.
 | ||
|    Or return -1, if an error has occurred.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| re_dfa_add_node (re_dfa_t *dfa, re_token_t token)
 | ||
| {
 | ||
|   if (BE (dfa->nodes_len >= dfa->nodes_alloc, 0))
 | ||
|     {
 | ||
|       size_t new_nodes_alloc = dfa->nodes_alloc * 2;
 | ||
|       int *new_nexts, *new_indices;
 | ||
|       re_node_set *new_edests, *new_eclosures;
 | ||
|       re_token_t *new_nodes;
 | ||
| 
 | ||
|       /* Avoid overflows in realloc.  */
 | ||
|       const size_t max_object_size = MAX (sizeof (re_token_t),
 | ||
| 					  MAX (sizeof (re_node_set),
 | ||
| 					       sizeof (int)));
 | ||
|       if (BE (SIZE_MAX / max_object_size < new_nodes_alloc, 0))
 | ||
| 	return -1;
 | ||
| 
 | ||
|       new_nodes = re_realloc (dfa->nodes, re_token_t, new_nodes_alloc);
 | ||
|       if (BE (new_nodes == NULL, 0))
 | ||
| 	return -1;
 | ||
|       dfa->nodes = new_nodes;
 | ||
|       new_nexts = re_realloc (dfa->nexts, int, new_nodes_alloc);
 | ||
|       new_indices = re_realloc (dfa->org_indices, int, new_nodes_alloc);
 | ||
|       new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc);
 | ||
|       new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc);
 | ||
|       if (BE (new_nexts == NULL || new_indices == NULL
 | ||
| 	      || new_edests == NULL || new_eclosures == NULL, 0))
 | ||
| 	return -1;
 | ||
|       dfa->nexts = new_nexts;
 | ||
|       dfa->org_indices = new_indices;
 | ||
|       dfa->edests = new_edests;
 | ||
|       dfa->eclosures = new_eclosures;
 | ||
|       dfa->nodes_alloc = new_nodes_alloc;
 | ||
|     }
 | ||
|   dfa->nodes[dfa->nodes_len] = token;
 | ||
|   dfa->nodes[dfa->nodes_len].constraint = 0;
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   dfa->nodes[dfa->nodes_len].accept_mb =
 | ||
|     (token.type == OP_PERIOD && dfa->mb_cur_max > 1) || token.type == COMPLEX_BRACKET;
 | ||
| #endif
 | ||
|   dfa->nexts[dfa->nodes_len] = -1;
 | ||
|   re_node_set_init_empty (dfa->edests + dfa->nodes_len);
 | ||
|   re_node_set_init_empty (dfa->eclosures + dfa->nodes_len);
 | ||
|   return dfa->nodes_len++;
 | ||
| }
 | ||
| 
 | ||
| static inline unsigned int
 | ||
| internal_function
 | ||
| calc_state_hash (const re_node_set *nodes, unsigned int context)
 | ||
| {
 | ||
|   unsigned int hash = nodes->nelem + context;
 | ||
|   int i;
 | ||
|   for (i = 0 ; i < nodes->nelem ; i++)
 | ||
|     hash += nodes->elems[i];
 | ||
|   return hash;
 | ||
| }
 | ||
| 
 | ||
| /* Search for the state whose node_set is equivalent to NODES.
 | ||
|    Return the pointer to the state, if we found it in the DFA.
 | ||
|    Otherwise create the new one and return it.  In case of an error
 | ||
|    return NULL and set the error code in ERR.
 | ||
|    Note: - We assume NULL as the invalid state, then it is possible that
 | ||
| 	   return value is NULL and ERR is REG_NOERROR.
 | ||
| 	 - We never return non-NULL value in case of any errors, it is for
 | ||
| 	   optimization.  */
 | ||
| 
 | ||
| static re_dfastate_t *
 | ||
| internal_function
 | ||
| re_acquire_state (reg_errcode_t *err, const re_dfa_t *dfa,
 | ||
| 		  const re_node_set *nodes)
 | ||
| {
 | ||
|   unsigned int hash;
 | ||
|   re_dfastate_t *new_state;
 | ||
|   struct re_state_table_entry *spot;
 | ||
|   int i;
 | ||
|   if (BE (nodes->nelem == 0, 0))
 | ||
|     {
 | ||
|       *err = REG_NOERROR;
 | ||
|       return NULL;
 | ||
|     }
 | ||
|   hash = calc_state_hash (nodes, 0);
 | ||
|   spot = dfa->state_table + (hash & dfa->state_hash_mask);
 | ||
| 
 | ||
|   for (i = 0 ; i < spot->num ; i++)
 | ||
|     {
 | ||
|       re_dfastate_t *state = spot->array[i];
 | ||
|       if (hash != state->hash)
 | ||
| 	continue;
 | ||
|       if (re_node_set_compare (&state->nodes, nodes))
 | ||
| 	return state;
 | ||
|     }
 | ||
| 
 | ||
|   /* There are no appropriate state in the dfa, create the new one.  */
 | ||
|   new_state = create_ci_newstate (dfa, nodes, hash);
 | ||
|   if (BE (new_state == NULL, 0))
 | ||
|     *err = REG_ESPACE;
 | ||
| 
 | ||
|   return new_state;
 | ||
| }
 | ||
| 
 | ||
| /* Search for the state whose node_set is equivalent to NODES and
 | ||
|    whose context is equivalent to CONTEXT.
 | ||
|    Return the pointer to the state, if we found it in the DFA.
 | ||
|    Otherwise create the new one and return it.  In case of an error
 | ||
|    return NULL and set the error code in ERR.
 | ||
|    Note: - We assume NULL as the invalid state, then it is possible that
 | ||
| 	   return value is NULL and ERR is REG_NOERROR.
 | ||
| 	 - We never return non-NULL value in case of any errors, it is for
 | ||
| 	   optimization.  */
 | ||
| 
 | ||
| static re_dfastate_t *
 | ||
| internal_function
 | ||
| re_acquire_state_context (reg_errcode_t *err, const re_dfa_t *dfa,
 | ||
| 			  const re_node_set *nodes, unsigned int context)
 | ||
| {
 | ||
|   unsigned int hash;
 | ||
|   re_dfastate_t *new_state;
 | ||
|   struct re_state_table_entry *spot;
 | ||
|   int i;
 | ||
|   if (nodes->nelem == 0)
 | ||
|     {
 | ||
|       *err = REG_NOERROR;
 | ||
|       return NULL;
 | ||
|     }
 | ||
|   hash = calc_state_hash (nodes, context);
 | ||
|   spot = dfa->state_table + (hash & dfa->state_hash_mask);
 | ||
| 
 | ||
|   for (i = 0 ; i < spot->num ; i++)
 | ||
|     {
 | ||
|       re_dfastate_t *state = spot->array[i];
 | ||
|       if (state->hash == hash
 | ||
| 	  && state->context == context
 | ||
| 	  && re_node_set_compare (state->entrance_nodes, nodes))
 | ||
| 	return state;
 | ||
|     }
 | ||
|   /* There are no appropriate state in `dfa', create the new one.  */
 | ||
|   new_state = create_cd_newstate (dfa, nodes, context, hash);
 | ||
|   if (BE (new_state == NULL, 0))
 | ||
|     *err = REG_ESPACE;
 | ||
| 
 | ||
|   return new_state;
 | ||
| }
 | ||
| 
 | ||
| /* Finish initialization of the new state NEWSTATE, and using its hash value
 | ||
|    HASH put in the appropriate bucket of DFA's state table.  Return value
 | ||
|    indicates the error code if failed.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| register_state (const re_dfa_t *dfa, re_dfastate_t *newstate,
 | ||
| 		unsigned int hash)
 | ||
| {
 | ||
|   struct re_state_table_entry *spot;
 | ||
|   reg_errcode_t err;
 | ||
|   int i;
 | ||
| 
 | ||
|   newstate->hash = hash;
 | ||
|   err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     return REG_ESPACE;
 | ||
|   for (i = 0; i < newstate->nodes.nelem; i++)
 | ||
|     {
 | ||
|       int elem = newstate->nodes.elems[i];
 | ||
|       if (!IS_EPSILON_NODE (dfa->nodes[elem].type))
 | ||
| 	if (re_node_set_insert_last (&newstate->non_eps_nodes, elem) < 0)
 | ||
| 	  return REG_ESPACE;
 | ||
|     }
 | ||
| 
 | ||
|   spot = dfa->state_table + (hash & dfa->state_hash_mask);
 | ||
|   if (BE (spot->alloc <= spot->num, 0))
 | ||
|     {
 | ||
|       int new_alloc = 2 * spot->num + 2;
 | ||
|       re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *,
 | ||
| 					      new_alloc);
 | ||
|       if (BE (new_array == NULL, 0))
 | ||
| 	return REG_ESPACE;
 | ||
|       spot->array = new_array;
 | ||
|       spot->alloc = new_alloc;
 | ||
|     }
 | ||
|   spot->array[spot->num++] = newstate;
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| free_state (re_dfastate_t *state)
 | ||
| {
 | ||
|   re_node_set_free (&state->non_eps_nodes);
 | ||
|   re_node_set_free (&state->inveclosure);
 | ||
|   if (state->entrance_nodes != &state->nodes)
 | ||
|     {
 | ||
|       re_node_set_free (state->entrance_nodes);
 | ||
|       re_free (state->entrance_nodes);
 | ||
|     }
 | ||
|   re_node_set_free (&state->nodes);
 | ||
|   re_free (state->word_trtable);
 | ||
|   re_free (state->trtable);
 | ||
|   re_free (state);
 | ||
| }
 | ||
| 
 | ||
| /* Create the new state which is independ of contexts.
 | ||
|    Return the new state if succeeded, otherwise return NULL.  */
 | ||
| 
 | ||
| static re_dfastate_t *
 | ||
| internal_function
 | ||
| create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes,
 | ||
| 		    unsigned int hash)
 | ||
| {
 | ||
|   int i;
 | ||
|   reg_errcode_t err;
 | ||
|   re_dfastate_t *newstate;
 | ||
| 
 | ||
|   newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1);
 | ||
|   if (BE (newstate == NULL, 0))
 | ||
|     return NULL;
 | ||
|   err = re_node_set_init_copy (&newstate->nodes, nodes);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     {
 | ||
|       re_free (newstate);
 | ||
|       return NULL;
 | ||
|     }
 | ||
| 
 | ||
|   newstate->entrance_nodes = &newstate->nodes;
 | ||
|   for (i = 0 ; i < nodes->nelem ; i++)
 | ||
|     {
 | ||
|       re_token_t *node = dfa->nodes + nodes->elems[i];
 | ||
|       re_token_type_t type = node->type;
 | ||
|       if (type == CHARACTER && !node->constraint)
 | ||
| 	continue;
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       newstate->accept_mb |= node->accept_mb;
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 
 | ||
|       /* If the state has the halt node, the state is a halt state.  */
 | ||
|       if (type == END_OF_RE)
 | ||
| 	newstate->halt = 1;
 | ||
|       else if (type == OP_BACK_REF)
 | ||
| 	newstate->has_backref = 1;
 | ||
|       else if (type == ANCHOR || node->constraint)
 | ||
| 	newstate->has_constraint = 1;
 | ||
|     }
 | ||
|   err = register_state (dfa, newstate, hash);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     {
 | ||
|       free_state (newstate);
 | ||
|       newstate = NULL;
 | ||
|     }
 | ||
|   return newstate;
 | ||
| }
 | ||
| 
 | ||
| /* Create the new state which is depend on the context CONTEXT.
 | ||
|    Return the new state if succeeded, otherwise return NULL.  */
 | ||
| 
 | ||
| static re_dfastate_t *
 | ||
| internal_function
 | ||
| create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes,
 | ||
| 		    unsigned int context, unsigned int hash)
 | ||
| {
 | ||
|   int i, nctx_nodes = 0;
 | ||
|   reg_errcode_t err;
 | ||
|   re_dfastate_t *newstate;
 | ||
| 
 | ||
|   newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1);
 | ||
|   if (BE (newstate == NULL, 0))
 | ||
|     return NULL;
 | ||
|   err = re_node_set_init_copy (&newstate->nodes, nodes);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     {
 | ||
|       re_free (newstate);
 | ||
|       return NULL;
 | ||
|     }
 | ||
| 
 | ||
|   newstate->context = context;
 | ||
|   newstate->entrance_nodes = &newstate->nodes;
 | ||
| 
 | ||
|   for (i = 0 ; i < nodes->nelem ; i++)
 | ||
|     {
 | ||
|       re_token_t *node = dfa->nodes + nodes->elems[i];
 | ||
|       re_token_type_t type = node->type;
 | ||
|       unsigned int constraint = node->constraint;
 | ||
| 
 | ||
|       if (type == CHARACTER && !constraint)
 | ||
| 	continue;
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       newstate->accept_mb |= node->accept_mb;
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 
 | ||
|       /* If the state has the halt node, the state is a halt state.  */
 | ||
|       if (type == END_OF_RE)
 | ||
| 	newstate->halt = 1;
 | ||
|       else if (type == OP_BACK_REF)
 | ||
| 	newstate->has_backref = 1;
 | ||
| 
 | ||
|       if (constraint)
 | ||
| 	{
 | ||
| 	  if (newstate->entrance_nodes == &newstate->nodes)
 | ||
| 	    {
 | ||
| 	      newstate->entrance_nodes = re_malloc (re_node_set, 1);
 | ||
| 	      if (BE (newstate->entrance_nodes == NULL, 0))
 | ||
| 		{
 | ||
| 		  free_state (newstate);
 | ||
| 		  return NULL;
 | ||
| 		}
 | ||
| 	      if (re_node_set_init_copy (newstate->entrance_nodes, nodes)
 | ||
| 		  != REG_NOERROR)
 | ||
| 		return NULL;
 | ||
| 	      nctx_nodes = 0;
 | ||
| 	      newstate->has_constraint = 1;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context))
 | ||
| 	    {
 | ||
| 	      re_node_set_remove_at (&newstate->nodes, i - nctx_nodes);
 | ||
| 	      ++nctx_nodes;
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
|   err = register_state (dfa, newstate, hash);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     {
 | ||
|       free_state (newstate);
 | ||
|       newstate = NULL;
 | ||
|     }
 | ||
|   return  newstate;
 | ||
| }
 |