net/art: implement the stride table building block of ART
A stride table is an 8-bit routing table implemented as an array binary tree, with a special tree updating function (allot) that enables lightning fast address lookups and reasonably fast insertion and deletion. Insertion, deletion and lookup are all allocation-free. Updates #7781 │ sec/op │ StrideTableInsertion/10/random_order 16.79n ± 2% StrideTableInsertion/10/largest_first 16.83n ± 1% StrideTableInsertion/10/smallest_first 16.83n ± 0% StrideTableInsertion/50/random_order 17.84n ± 1% StrideTableInsertion/50/largest_first 20.04n ± 1% StrideTableInsertion/50/smallest_first 16.39n ± 0% StrideTableInsertion/100/random_order 14.63n ± 0% StrideTableInsertion/100/largest_first 17.45n ± 4% StrideTableInsertion/100/smallest_first 12.98n ± 0% StrideTableInsertion/200/random_order 12.51n ± 4% StrideTableInsertion/200/largest_first 18.36n ± 3% StrideTableInsertion/200/smallest_first 9.609n ± 3% StrideTableDeletion/10/random_order 19.50n ± 1% StrideTableDeletion/10/largest_first 19.34n ± 0% StrideTableDeletion/10/smallest_first 19.43n ± 0% StrideTableDeletion/50/random_order 14.58n ± 1% StrideTableDeletion/50/largest_first 14.27n ± 2% StrideTableDeletion/50/smallest_first 15.51n ± 0% StrideTableDeletion/100/random_order 12.02n ± 3% StrideTableDeletion/100/largest_first 10.64n ± 0% StrideTableDeletion/100/smallest_first 13.21n ± 3% StrideTableDeletion/200/random_order 14.05n ± 4% StrideTableDeletion/200/largest_first 9.288n ± 5% StrideTableDeletion/200/smallest_first 18.51n ± 1% StrideTableGet 0.5010n ± 0% │ routes/s │ StrideTableInsertion/10/random_order 59.55M ± 2% StrideTableInsertion/10/largest_first 59.42M ± 1% StrideTableInsertion/10/smallest_first 59.43M ± 0% StrideTableInsertion/50/random_order 56.04M ± 1% StrideTableInsertion/50/largest_first 49.91M ± 1% StrideTableInsertion/50/smallest_first 61.00M ± 0% StrideTableInsertion/100/random_order 68.35M ± 0% StrideTableInsertion/100/largest_first 57.32M ± 3% StrideTableInsertion/100/smallest_first 77.06M ± 0% StrideTableInsertion/200/random_order 79.93M ± 4% StrideTableInsertion/200/largest_first 54.47M ± 3% StrideTableInsertion/200/smallest_first 104.1M ± 3% StrideTableDeletion/10/random_order 51.28M ± 1% StrideTableDeletion/10/largest_first 51.70M ± 0% StrideTableDeletion/10/smallest_first 51.48M ± 0% StrideTableDeletion/50/random_order 68.60M ± 1% StrideTableDeletion/50/largest_first 70.09M ± 2% StrideTableDeletion/50/smallest_first 64.45M ± 0% StrideTableDeletion/100/random_order 83.21M ± 3% StrideTableDeletion/100/largest_first 94.03M ± 0% StrideTableDeletion/100/smallest_first 75.69M ± 3% StrideTableDeletion/200/random_order 71.20M ± 5% StrideTableDeletion/200/largest_first 107.7M ± 5% StrideTableDeletion/200/smallest_first 54.02M ± 1% StrideTableGet 1.996G ± 0% Signed-off-by: David Anderson <danderson@tailscale.com>
This commit is contained in:

committed by
Dave Anderson

parent
6d5c3c1637
commit
4d1b3bc26f
226
net/art/stride_table.go
Normal file
226
net/art/stride_table.go
Normal file
@ -0,0 +1,226 @@
|
||||
// Copyright (c) Tailscale Inc & AUTHORS
|
||||
// SPDX-License-Identifier: BSD-3-Clause
|
||||
|
||||
package art
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"io"
|
||||
"math/bits"
|
||||
"strconv"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// strideEntry is a strideTable entry.
|
||||
type strideEntry[T any] struct {
|
||||
// prefixIndex is the prefixIndex(...) value that caused this stride entry's
|
||||
// value to be populated, or 0 if value is nil.
|
||||
//
|
||||
// We need to keep track of this because allot() uses it to determine
|
||||
// whether an entry was propagated from a parent entry, or if it's a
|
||||
// different independent route.
|
||||
prefixIndex int
|
||||
// value is the value associated with the strideEntry, if any.
|
||||
value *T
|
||||
// child is the child strideTable associated with the strideEntry, if any.
|
||||
child *strideTable[T]
|
||||
}
|
||||
|
||||
// strideTable is a binary tree that implements an 8-bit routing table.
|
||||
//
|
||||
// The leaves of the binary tree are host routes (/8s). Each parent is a
|
||||
// successively larger prefix that encompasses its children (/7 through /0).
|
||||
type strideTable[T any] struct {
|
||||
// entries is the nodes of the binary tree, laid out in a flattened array.
|
||||
//
|
||||
// The array indices are arranged by the prefixIndex function, such that the
|
||||
// parent of the node at index i is located at index i>>1, and its children
|
||||
// at indices i<<1 and (i<<1)+1.
|
||||
//
|
||||
// A few consequences of this arrangement: host routes (/8) occupy the last
|
||||
// 256 entries in the table; the single default route /0 is at index 1, and
|
||||
// index 0 is unused (in the original paper, it's hijacked through sneaky C
|
||||
// memory trickery to store the refcount, but this is Go, where we don't
|
||||
// store random bits in pointers lest we confuse the GC)
|
||||
entries [lastHostIndex + 1]strideEntry[T]
|
||||
// refs is the number of route entries and child strideTables referenced by
|
||||
// this table. It is used in the multi-layered logic to determine when this
|
||||
// table is empty and can be deleted.
|
||||
refs int
|
||||
}
|
||||
|
||||
const (
|
||||
// firstHostIndex is the array index of the first host route. This is hostIndex(0/8).
|
||||
firstHostIndex = 0b1_0000_0000
|
||||
// lastHostIndex is the array index of the last host route. This is hostIndex(0xFF/8).
|
||||
lastHostIndex = 0b1_1111_1111
|
||||
)
|
||||
|
||||
// getChild returns the child strideTable pointer for addr (if any), and an
|
||||
// internal array index that can be used with deleteChild.
|
||||
func (t *strideTable[T]) getChild(addr uint8) (child *strideTable[T], idx int) {
|
||||
idx = hostIndex(addr)
|
||||
return t.entries[idx].child, idx
|
||||
}
|
||||
|
||||
// deleteChild deletes the child strideTable at idx (if any). idx should be
|
||||
// obtained via a call to getChild.
|
||||
func (t *strideTable[T]) deleteChild(idx int) {
|
||||
t.entries[idx].child = nil
|
||||
t.refs--
|
||||
}
|
||||
|
||||
// getOrCreateChild returns the child strideTable for addr, creating it if
|
||||
// necessary.
|
||||
func (t *strideTable[T]) getOrCreateChild(addr uint8) *strideTable[T] {
|
||||
idx := hostIndex(addr)
|
||||
if t.entries[idx].child == nil {
|
||||
t.entries[idx].child = new(strideTable[T])
|
||||
t.refs++
|
||||
}
|
||||
return t.entries[idx].child
|
||||
}
|
||||
|
||||
// allot updates entries whose stored prefixIndex matches oldPrefixIndex, in the
|
||||
// subtree rooted at idx. Matching entries have their stored prefixIndex set to
|
||||
// newPrefixIndex, and their value set to val.
|
||||
//
|
||||
// allot is the core of the ART algorithm, enabling efficient insertion/deletion
|
||||
// while preserving very fast lookups.
|
||||
func (t *strideTable[T]) allot(idx int, oldPrefixIndex, newPrefixIndex int, val *T) {
|
||||
if t.entries[idx].prefixIndex != oldPrefixIndex {
|
||||
// current prefixIndex isn't what we expect. This is a recursive call
|
||||
// that found a child subtree that already has a more specific route
|
||||
// installed. Don't touch it.
|
||||
return
|
||||
}
|
||||
t.entries[idx].value = val
|
||||
t.entries[idx].prefixIndex = newPrefixIndex
|
||||
if idx >= firstHostIndex {
|
||||
// The entry we just updated was a host route, we're at the bottom of
|
||||
// the binary tree.
|
||||
return
|
||||
}
|
||||
// Propagate the allotment to this node's children.
|
||||
left := idx << 1
|
||||
t.allot(left, oldPrefixIndex, newPrefixIndex, val)
|
||||
right := left + 1
|
||||
t.allot(right, oldPrefixIndex, newPrefixIndex, val)
|
||||
}
|
||||
|
||||
// insert adds the route addr/prefixLen to t, with value val.
|
||||
func (t *strideTable[T]) insert(addr uint8, prefixLen int, val *T) {
|
||||
idx := prefixIndex(addr, prefixLen)
|
||||
old := t.entries[idx].value
|
||||
oldIdx := t.entries[idx].prefixIndex
|
||||
if oldIdx == idx && old == val {
|
||||
// This exact prefix+value is already in the table.
|
||||
return
|
||||
}
|
||||
t.allot(idx, oldIdx, idx, val)
|
||||
if oldIdx != idx {
|
||||
// This route entry was freshly created (not just updated), that's a new
|
||||
// reference.
|
||||
t.refs++
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// delete removes the route addr/prefixLen from t.
|
||||
func (t *strideTable[T]) delete(addr uint8, prefixLen int) *T {
|
||||
idx := prefixIndex(addr, prefixLen)
|
||||
recordedIdx := t.entries[idx].prefixIndex
|
||||
if recordedIdx != idx {
|
||||
// Route entry doesn't exist
|
||||
return nil
|
||||
}
|
||||
val := t.entries[idx].value
|
||||
|
||||
parentIdx := idx >> 1
|
||||
t.allot(idx, idx, t.entries[parentIdx].prefixIndex, t.entries[parentIdx].value)
|
||||
t.refs--
|
||||
return val
|
||||
}
|
||||
|
||||
// get does a route lookup for addr and returns the associated value, or nil if
|
||||
// no route matched.
|
||||
func (t *strideTable[T]) get(addr uint8) *T {
|
||||
return t.entries[hostIndex(addr)].value
|
||||
}
|
||||
|
||||
// TableDebugString returns the contents of t, formatted as a table with one
|
||||
// line per entry.
|
||||
func (t *strideTable[T]) tableDebugString() string {
|
||||
var ret bytes.Buffer
|
||||
for i, ent := range t.entries {
|
||||
if i == 0 {
|
||||
continue
|
||||
}
|
||||
v := "(nil)"
|
||||
if ent.value != nil {
|
||||
v = fmt.Sprint(*ent.value)
|
||||
}
|
||||
fmt.Fprintf(&ret, "idx=%3d (%s), parent=%3d (%s), val=%v\n", i, formatPrefixTable(inversePrefixIndex(i)), ent.prefixIndex, formatPrefixTable(inversePrefixIndex((ent.prefixIndex))), v)
|
||||
}
|
||||
return ret.String()
|
||||
}
|
||||
|
||||
// treeDebugString returns the contents of t, formatted as a sparse tree. Each
|
||||
// line is one entry, indented such that it is contained by all its parents, and
|
||||
// non-overlapping with any of its siblings.
|
||||
func (t *strideTable[T]) treeDebugString() string {
|
||||
var ret bytes.Buffer
|
||||
t.treeDebugStringRec(&ret, 1, 0) // index of 0/0, and 0 indent
|
||||
return ret.String()
|
||||
}
|
||||
|
||||
func (t *strideTable[T]) treeDebugStringRec(w io.Writer, idx, indent int) {
|
||||
addr, len := inversePrefixIndex(idx)
|
||||
if t.entries[idx].prefixIndex != 0 && t.entries[idx].prefixIndex == idx {
|
||||
fmt.Fprintf(w, "%s%d/%d (%d/%d) = %v\n", strings.Repeat(" ", indent), addr, len, addr, len, *t.entries[idx].value)
|
||||
indent += 2
|
||||
}
|
||||
if idx >= firstHostIndex {
|
||||
return
|
||||
}
|
||||
left := idx << 1
|
||||
t.treeDebugStringRec(w, left, indent)
|
||||
right := left + 1
|
||||
t.treeDebugStringRec(w, right, indent)
|
||||
}
|
||||
|
||||
// prefixIndex returns the array index of the tree node for addr/prefixLen.
|
||||
func prefixIndex(addr uint8, prefixLen int) int {
|
||||
// the prefixIndex of addr/prefixLen is the prefixLen most significant bits
|
||||
// of addr, with a 1 tacked onto the left-hand side. For example:
|
||||
//
|
||||
// - 0/0 is 1: 0 bits of the addr, with a 1 tacked on
|
||||
// - 42/8 is 1_00101010 (298): all bits of 42, with a 1 tacked on
|
||||
// - 48/4 is 1_0011 (19): 4 most-significant bits of 48, with a 1 tacked on
|
||||
return (int(addr) >> (8 - prefixLen)) + (1 << prefixLen)
|
||||
}
|
||||
|
||||
// hostIndex returns the array index of the host route for addr.
|
||||
// It is equivalent to prefixIndex(addr, 8).
|
||||
func hostIndex(addr uint8) int {
|
||||
return int(addr) + 1<<8
|
||||
}
|
||||
|
||||
// inversePrefixIndex returns the address and prefix length of idx. It is the
|
||||
// inverse of prefixIndex. Only used for debugging and in tests.
|
||||
func inversePrefixIndex(idx int) (addr uint8, len int) {
|
||||
lz := bits.LeadingZeros(uint(idx))
|
||||
len = strconv.IntSize - lz - 1
|
||||
addr = uint8(idx&(0xFF>>(8-len))) << (8 - len)
|
||||
return addr, len
|
||||
}
|
||||
|
||||
// formatPrefixTable formats addr and len as addr/len, with a constant width
|
||||
// suitable for use in table formatting.
|
||||
func formatPrefixTable(addr uint8, len int) string {
|
||||
if len < 0 { // this happens for inversePrefixIndex(0)
|
||||
return "<nil>"
|
||||
}
|
||||
return fmt.Sprintf("%3d/%d", addr, len)
|
||||
}
|
Reference in New Issue
Block a user